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Simplicity is the ultimate sophistication
Leonardo da Vinci (1452-1519)



Preface

Part I of this monograph is concerned with the theoretical, analytical as well as nu-
merical prediction of field-induced dynamics and structure for simple models de-
scribing soft matter. It presents selected results and demonstrates ranges of applica-
tions for the methods described in Part II. Special emphasis is placed on the finitely
extendable nonlinear elastic (FENE) chain models for polymeric liquids, their dy-
namical and rheological behavior and the description of their inherently anisotropic
material properties by means of deterministic and stochastic approaches. A number
of representative examples are given on how simple (but high-dimensional) models
can be implemented in order to enable the analysis of the microscopic origins of the
dynamical behavior of polymeric materials. These examples are shown to provide
us with a number of routes for developing and establishing low-dimensional mod-
els devoted to the prediction of a reduced number of significant material properties.
Concerning the types of complex fluids, we cover the range from flexible polymers in
melts and solutions, wormlike micelles, actin filaments, rigid and semiflexible mole-
cules in flow-induced anisotropic, and also liquid crystalline phases. Fokker—Planck
equations and molecular and brownian dynamics computer simulation methods are
involved to formulate and analyze the model fluids.

Part II allows the reader to redo simulations and motivates for further investiga-
tion of polymeric and anisotropic fluids. It contains computational recipes for devis-
ing simulation methods and codes, including Monte Carlo, molecular and brownian
dynamics (written in Mathwork’s Matlab, thus allowing for simple visualization and
animation). A special chapter on isotropic and irreducible tensors allows for com-
fortable conversion between stochastic differential equations, tensorial balances, and
equations for coefficients, including the testing of closure approximations. We ex-
plicitly derive coupled equations for alignment tensors for arbitrary tensor fields
suitable for nth order approximations strictly valid close to equilibrium, and also
highly anisotropic states.

Switzerland Martin Kroger
March, 2005 ETH Ziirich
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Illustrations & Applications






1

Simple Models for Polymeric and Anisotropic Liquids

We hope that the complexity of the world is neither in contrast with the simplicity
of the basic laws of physics [1] nor with the simple physical models to be reviewed
or proposed in the following. However, physical phenomena occurring in complex
materials cannot be encapsulated within a single numerical paradigm. In fact, they
should be described within hierarchical, multi-level numerical models in which each
sub-model is responsible for different spatio-temporal behavior and passes out the
averaged parameters to the model, which is next in the hierarchy (Fig. 1.1). Poly-
meric liquids far from equilibrium belong to the class of anisotropic liquids.! This
monograph is devoted to the understanding of the anisotropic properties of polymeric
and complex fluids such as viscoelastic and orientational behavior of polymeric lig-
uids, the rheological properties of ferrofluids and liquid crystals subjected to external
fields, based on the architecture of their molecular constituents. The topic is of con-
siderable concern in basic research for which models should be as simple as possible,
but not simpler. Certainly, it is also of technological relevance. Statistical physics and
nonequilibrium thermodynamics are challenged by the desired structure-property re-
lationships. Experiments such as static and dynamic light and neutron scattering, par-
ticle tracking, flow birefringence etc. together with rheological measurements have
been essential to adjust or test basic theoretical concepts, such as a ‘linear stress-
optic rule’ which connects orientation and stress, or the effect of molecular weight,
solvent conditions, and external field parameters on shape, diffusion, degradation,
and alignment of molecules.

During the last decade the anlaysis of simple physical particle models for com-
plex fluids has developed from the molecular computation of basic systems (atoms,
rigid molecules) to the simulation of macromolecular ‘complex’ system with a large
number of internal degrees of freedom exposed to external forces. This monograph
should be in certain aspects complementary to others. The foundations of molecular

! Greek: an (non) iso (equal) trop (to turn): Anisotropic materials exhibit properties with
different values when measured in different directions. Material properties are rotation-
invariant, usually either due to boundary conditions, anisotropic applied external fields, or
the presence of nonspherical constituents.
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Fig. 1.1. Time and length scales of a typical polymer problem. In this review we are con-
cerned with micro- and mesoscopic models (framed) which aim to describe physical behav-
ior beyond equilibrium, beyond chemical details (botfom), and may be implemented into the
macro-computation of complex flows (fop)

and brownian dynamics methods for simple microscopic models for macromolec-
ular systems have been extensively revisited [2]. Multiscale simulation in polymer
science with special emphasis on coarse-grained models (incl. a soft-ellipsoid model)
has been recently reviewed by Kremer and Muller-Plathe [3]. In the light of modern
reviews on physical micro- and mesoscopic models to be mentioned below our focus
is placed onto aspects which have been less extensively considered. Upon these are,
in part 1 of this monograph, orientation and entanglement effects, the implications
of stretchability, flexibilty, order parameters, scission and recombination on material
properties of anisotropic, dilute and concentrated polymeric bulk fluids in the pres-
ence of macroscopic flow and electromagnetic fields. Part II is an attempt to collect
the minimum amount of information to implement and develop analytic theory and
computational tools.

In part 1 this monograph is first of all concerned with the applicability and suit-
ability of bead-spring multi chain models which incorporate finite extensibility of
segments (so called FENE models, cf. Page 203), molecular architecture and flexi-
bility, and capture topological interactions. Second, it aims to give an overview about
the range of applications of simple mesoscopic theories, in particular primitive path
models and elongated particle models, where topological aspects are either approx-
imatly treated or disregarded. In view of a rapidly growing amount of research and
number of publications on these topics, we try to present a balanced selection of



