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“A theory is the more impressive the greater the simplicity of its premises is,
the more different kinds of things it relates, and the more extended is its
area of applicability. Therefore, the deep impression which classical
thermodynamics made upon me. It is the only physical theory of universal
content concerning which I am convinced that, within the framework of the
applicability of its basic concepts, it will never be overthrown.”

Albert Einstein,

Autobiographical Notes, page 33 in

The Library of Living Philosophers, Vol. VII;
Albert Einstein: Philosopher-Scientist,

edited by P. A. Schilpp,

Open Court Publishing Company,
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Preface

This revision presents the fourth version of a textbook that appeared originally
thirty-five years ago. The fundamental purpose of the book remains un-
changed, to present to the student the logical foundations and interrelation-
ships of the theory of thermodynamics and to teach the student the methods by
which the theoretical methods may be applied to practical problems.

In the treatment of theoretical principles, we have adopted the classical, or
phenomenological, approach to thermodynamics and have excluded entirely
the statistical viewpoint. This attitude has several pedagogical advantages.
First, it permits the maintenance of a logical unity throughout the book. In
addition, it offers an opportunity to stress the “operational” approach to
abstract concepts. Furthermore, it makes some contribution toward freeing the
student from a perpetual yearning for a mechanical analogue for every new
concept that is introduced. Finally, and perhaps most important, it avoids the
promulgation of an all-too-common point of view toward statistical thermo-
dynamics as an appendage which can be conveniently grafted on to the body
of thermodynamics. A logical development of the statistical approach should
probably be based on a previous introduction to the fundamental quantum-
mechanical concept of energy level and should emphasize the much broader
scope of the phenomena that it can treat. An effective presentation of statistical
theory should be, therefore, an independent and complementary one to
phenomenological thermodynamics.

A great deal of attention is paid in this text to training the student in the
application of the theory of thermodynamics to problems that are commonly
encountered by the chemist, the biologist, and the geologist. The mathematical
tools that are necessary for this purpose are considered in more detail than is
usual. In addition, computational techniques, graphical, numerical, and
analytical, are described fully and are used frequently, both in illustrative and
in assigned problems. Furthermore, exercises have been designed to simulate
more than in most texts the type of problem that may be encountered by the
practicing scientist. Short, unrelated exercises are thus kept to a minimum,
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Preface Vii

whereas series of computations or derivations, illustrating a technique or
principle of general applicability, are emphasized.

We have also made a definite effort to keep this volume within limits that
can be covered in a course of lectures extending over a period of twelve to
fifteen weeks. Too often, a textbook that attempts to be exhaustive in its
coverage merely serves to overwhelm the student. On the other hand, if a
student can be guided to a sound grasp of the fundamental principles and
shown how these can be applied to a few typical problems, that student will be
capable of examining other special topics independently or with the aid of one
of the excellent comprehensive treatises that are available.

Another feature of this book is the extensive use of subheadings in outline
form to indicate the position of a given topic in the general sequence of
presentation. In using this method of presentation, we have been influenced
strongly by the viewpoint expressed so aptly by Poincaré: “The order in which
these elements are placed is much more important than the elements
themselves. If I have the feeling. .. of this order, so as to perceive at a glance
the reasoning as a whole, I need no longer fear lest I forget one of the elements,
for each of them will take its allotted place in the array, and that without any
effort of memory on my part.”' It is a universal experience of teachers, that
students are able to retain a body of information much more effectively if they
are aware of the place of the parts in the whole.

Although thermodynamics has not changed fundamentally since the first
edition was published, conventions and pedagogical approaches have
changed, and new applications continue to appear. The application of
thermodynamics to biological and geological problems has been particularly
fruitful. We have taken the opportunity, therefore, to revise our approach to
some topics, to use SI units, to use the new standard state of 0.1 MPa (1 bar),
and to add problems that reflect new applications. In addition, we have added
a new chapter on equilibrium in gravitational and ultracentrifugal fields, a
subject of both geological and biological interest.

We acknowledge helpful comments on the manuscript from Henry Bent,
David Volman, O. D. Bonner, Claude Meares, John E. Bauman, and Laurence
Strong. We also thank Edgar Westrum for making it clear that the title of
Chapter 18 needed revision. We thank Carol Techlin for careful typing of a
difficult manuscript, Cheryl Chisnell for recording index entries into the
computer, and E. Virginia Hobbs of McGaffey Associates for producing the
index. We are grateful to Dr. E. Richard Cohen for the tentative values of the
fundamental constants in Table 2-3. A solutions manual that contains
solutions to most of the problems in the text is available from the publisher.

Evanston, Illinois
ILM.K.

Appleton, Wisconsin
R.M.R.

'H. Poincaré, The Foundations of Science, translated by G. B. Halsted, Science Press, 1913.
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CHAPTER 1

Introduction

1-1 ORIGINS OF CHEMICAL THERMODYNAMICS

An alert young scientist with only an elementary background in his or her field
might be surprised to learn that a subject called “thermodynamics” has any
relevance to chemical change or to biological and geological systems. The term
thermodynamics, taken literally, implies a field concerned with the mechanical
action produced by heat. Lord Kelvin invented the name to direct attention to
the dynamic nature of heat and to contrast this perspective with previous
conceptions of heat as a type of fluid.

In contrast to mechanics, electromagnetic field theory, or relativity, where
the names of Newton, Maxwell, and Einstein stand out uniquely, the
foundations of thermodynamics arose from the thinking of over half a dozen
individuals: Carnot, Mayer, Joule, Helmholtz, Rankine, Kelvin, Clausius [1].
Each provided crucial steps leading to the grand synthesis of the two classical
laws of thermodynamics.

The conceptual bottle into which was packaged eighteenth-century and
early nineteenth-century views of the nature of heat was the principle of
conservation of caloric. This principle is an eminently attractive basis for
rationalizing simple observations such as temperature changes that occur
when a cold body is placed in contact with a hot one. The cold body appears to
have extracted something from the hot one. Furthermore, if both bodies are
constituted of the same material, and the cold object has twice the mass of the
hot one, then we observe that the increase in temperature of the former is only
half the decrease in temperature of the latter. A conservation principle arises
naturally. From this, the notion of the flow of a substance from the hot to the
cold body appears almost intuitively, together with the concept that the total
quantity of the caloric can be represented by the product of the mass
multiplied by the temperature change. With these ideas in mind, Black was led



2 Chapter 1 Introduction

to the discovery of specific heat, heat of fusion, and heat of vaporization. Such
successes established the concept of caloric so solidly and persuasively that it
blinded even the greatest scientists of the early nineteenth century. Thus, they
missed seeing well-known facts that were common knowledge even in
primitive cultures—for example, that heat can be produced by friction.

It seems clear that the earliest of the founders of thermodynamics, Carnot,
accepted conservation of caloric as a basic axiom in his analysis [2] of the heat
engine (although a few individuals [3] claim to see an important distinction in
the contexts of Carnot’s uses of “calorique” versus “chaleur”).

Although Carnot’s primary objective was to evaluate the mechanical
efficiency of a steam engine, his analysis introduced certain broad concepts
whose significance goes far beyond engineering problems. One of these
concepts is the reversible process, which provides for thermodynamics the
corresponding idealization that “frictionless motion” contributes to mechan-
ics. The idea of “reversibility” has applicability much beyond ideal heat
engines. Furthermore, it introduces continuity into the visualization of the
process being considered; hence, it invites the introduction of the differential
calculus. It was Clapeyron [4] who actually expounded Carnot’s ideas in the
notation of calculus and who thereby derived the vapor pressure equation
associated with his name, as well as the performance characteristics of ideal
engines.

Carnot also leaned strongly on the analogy between a heat engine and a
hydrodynamic one (the water wheel) for, as he said,

we can reasonably compare the motive power of heat
with that of a head of water.

For the heat engine, one needs two temperature levels (a boiler and a
condenser) that correspond to the two levels in height of a waterfall. For a
waterfall, the quantity of water discharged by the wheel at the bottom level is
the same as the quantity that entered originally at the top level, work being
generated by the drop in gravitational level. Therefore, Carnot postulated that
a corresponding thermal quantity, “calorique,” was carried by the heat engine
from a high temperature to a low one; the heat that entered at the upper
temperature level was conserved and exited in exactly the same quantity at the
lower temperature, work having been produced during the drop in temperature
level. Using this postulate, he was able to answer in a general way the long-
standing question of whether steam was suited uniquely for a heat engine; he
did this by showing that in the ideal engine any other substance would be just
as efficient. It was also from this construct that Kelvin subsequently realized
that one could establish an absolute temperature scale independent of the
properties of any substance.

When faced in the late 1840s with the idea of conservation of (heat plus
work) proposed by Joule, Helmholtz, and Mayer, Kelvin at first rejected it (as
did the Proceedings of the Royal Society when presented with one of Joule’s
manuscripts) because conservation of energy (work plus heat) was inconsistent



