LEWIS * LOFTUS

SOFTWARE SOLUTIONS

'-::‘; FOUNDATIONS OF
| %i PROGRAM DESIGN
18

Seventh Edition

Seventh Edition

FOUNDATIONS OF PROGRAM DESIGN

JOHN LEWIS

A g mv fegh. . i:‘-,' "‘T
A T

wiL 03 SR
ntur D‘)' L

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sdo Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director:
Editor-in-Chief:
Editorial Assistant:

Marcia Horton
Michael Hirsch
Stephanie Sellinger

Image Permission Coordinator:

Cover Photograph:

Rita Wenning
© Creative Crop/Digital
Vision/Getty Images

Daniel Sandin
Wanda Rockwell

Media Editor:
Media Project Manager:
Full-Service Project

Vice President, Marketing:
Marketing Manager:
Marketing Coordinator:

Patrice Jones
Yezan Alayan
Kathryn Ferranti

Vice President, Production: Vince O’Brien Management: Rose Kernan,
Managing Editor: Jeff Holcomb g Nesbitt Gra'phlcs, Inc.
Production Project Manager: ~ Heather McNally Composition: Glyph International

Quad/Graphics Book
Services, Taunton
Coral Graphics Services,

Inc.
Sabon LT Std

Senior Operations Supervisor: Alan Fischer Printer/Binder:

Manufacturing Buyer: Lisa McDowell
Art Director: Linda Knowles
Cover Designer: Suzanne Harbison

Cover Printer:

Text Font:

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear below,
or on appropriate page within text.

Photo Credits: Page 11: NASA Earth Observing System. Page 205: Susan Van Etten /PhotoEdit. Page 267: David Joel /Stone/
Getty Images. Page 377 (left and right): National Oceanic and Atmospheric Administration NOAA. Page 441: Matthew McVay/
Stone/Getty Images. Page 485: Mario Fourmy/REA/Redux Pictures.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affili-
ated with the Microsoft Corporation.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street,
Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, Addison-Wesley, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Lewis, John, 1963-

Java software solutions : foundations of program design / John Lewis & William Loftus.
-- 7th ed.

. cm.

Includes bibliographical references and index.

ISBN 978-0-13-214918-1 (alk. paper)
1. Java (Computer program language) 2. Object-oriented programming (Computer
science) l. Loftus, William. II. Title.

QA76.73.]38L49 2012

005.13’3--dc22

2011001726

10987654321—QGT—151413 12 11

Addison-Wesley
is an imprint of

PEARSON

ISBN 10: 0-13-214918-4
ISBN 13: 978-0-13-214918-1

e

Through the power of practice and immediate personalized

feedback, MyProgramminglLab improves your performance.

mypro ninglab

Learn more at www.myprogramminglab.com

This book is dedicated to our families.
Sharon, Justin, Kayla, Nathan, and Samantha Lewis
and

Veena, Isaac, and Dévi Loftus

Welcome to the Seventh Edition of Java Software Solutions: Foundations of
Program Design. We are pleased that this book has served the needs of so many
students and faculty over the years. This edition has been tailored further to
improve the coverage of topics key to introductory computing.

New to This Edition

= Split Chapter S of the 6th edition into two for better coverage and flow.

= Moved the coverage of the Arraylist class earlier in the book to permit
more interesting projects earlier.

» Improved the discussion of an array as a programming construct.

= Improved the discussions of visibility modifiers, especially regarding the
protected modifier.

» Replaced and updated examples throughout the book.
= Replaced, updated, and added exercises and programming projects.
® Available with MyProgramminglLab (see details later in this Preface).

Feedback from both instructors and students continues to make it clear
that we have hit the mark with the overall vision of the book. The emphasis
remains on presenting underlying core concepts in a clear and gradual man-
ner. The Graphics Track sections in each chapter still segregate the coverage
of graphics and graphical user interfaces, giving extreme flexibility in how that
material gets covered. The casual writing style and entertaining examples still
rule the day.

The enhancements in this edition are designed to allow the instructor more
flexibility in topic coverage. In an attempt to cover all issues related to condi-
tionals and loops, Chapter 5 in the previous edition had become very large and
a bit too encyclopedic. In this edition that chapter has been carefully redesigned
into two, giving the coverage of those topics a better flow. The new organization
allows more interesting examples to be explored earlier.

One effect of this reorganization is that it allowed us to bring the coverage of
the ArrayList class earlier in the book. Although arrays are used internally to

vii

viii

PREFACE

implement the Arraylist class, there is no reason to wait for arrays to be covered
to introduce the ArraylList class. Like many other classes in the Java API, the
Arraylist class can be used without needing to know how it works internally. An
Arraylist object can be used for its (very valuable) functionality as soon as loops
are available. The new organization in this edition does exactly that. If the instruc-
tor chooses, coverage of ArraylList can still be deferred as it has been before, but
now the option is there to introduce them earlier.

In addition to these changes, various discussions throughout the book have
been revamped and improved. For example, the explanation of the effects of
the protected visibility modifier has enhanced to clarify its use. Furthermore,
throughout the book older examples have been rejuvenated, and end-of-chapter
exercises and programming projects have been augmented.

Cornerstones of the Text

This text is based on the following basic ideas that we believe make for a sound
introductory text:

m True object-orientation. A text that really teaches a solid object-oriented
approach must use what we call object-speak. That is, all processing should
be discussed in object-oriented terms. That does not mean, however, that
the first program a student sees must discuss the writing of multiple classes
and methods. A student should learn to use objects before learning to write
them. This text uses a natural progression that culminates in the ability to
design real object-oriented solutions.

» Sound programming practices. Students should not be taught how to
program; they should be taught how to write good software. There’s a
difference. Writing software is not a set of cookbook actions, and a good
program is more than a collection of statements. This text integrates
practices that serve as the foundation of good programming skills. These
practices are used in all examples and are reinforced in the discussions.
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques
throughout the text. The Software Failure vignettes reiterate these lessons
by demonstrating the perils of not following these sound practices.

m Examples. Students learn by example. This text is filled with fully imple-
mented examples that demonstrate specific concepts. We have intertwined
small, readily understandable examples with larger, more realistic ones.
There is a balance between graphics and nongraphics programs. The
VideoNotes provide additional examples in a live presentation format.

w Graphics and GUIs. Graphics can be a great motivator for students, and
their use can serve as excellent examples of object-orientation. As such,
we use them throughout the text in a well-defined set of sections that we
call the Graphics Track. This coverage includes the use of event processing
and GUIs. Students learn to build GUISs in the appropriate way by using a
natural progression of topics. The Graphics Track can be avoided entirely
for those who do not choose to use graphics.

Chapter Breakdown

Chapter 1 (Introduction) introduces computer systems in general, including basic
architecture and hardware, networking, programming, and language translation.
Java is introduced in this chapter, and the basics of general program development,
as well as object-oriented programming, are discussed. This chapter contains
broad introductory material that can be covered while students become familiar
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parameters,
and return types. Encapsulation and constructors are covered as well. Some of the
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to
make decisions. Then the if statement and while loop are explored in detail.
Once loops are established, the concept of an iterator is introduced and the
Scanner class is revisited for additional input parsing and the reading of text files.
Finally, the ArrayList class introduced, which provides the option for managing
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java’s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop.
The for-each loop is also used to process iterators and ArraylList objects.

PREFACE

ix

PREFACE

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of
issues related to the design of classes. Techniques for identifying the classes and
objects needed for a problem and the relationships among them are discussed.
This chapter also covers static class members, interfaces, and the design of enu-
merated type classes. Method design issues and method overloading are also
discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array processing.
The nature of an array as a low-level programming structure is contrasted to the
higher-level object management approach. Additional topics include command-
line arguments, variable length parameter lists, and multidimensional arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such
as class hierarchies, overriding, and visibility. Strong emphasis is put on the
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of
polymorphism. Design issues related to polymorphism are examined as well.

Chapter 11 (Exceptions) explores the class hierarchy from the Java standard
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of
recursion. Several examples from various domains are used to demonstrate how
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an
introduction to a CS2 course.

Supplements

Student Online Resources
These student resources can be accessed at the book’s Companion Website,
www.pearsonhighered.com/lewis:

m Source Code for all the programs in the text

m Links to Java development environments

= VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced

instruction with easy navigation including the ability to select, play, re-
wind, fast-forward, and stop within each VideoNote exercise. Margin icons
in your textbook let you know when a VideoNote video is available for a
particular concept or homework problem.

Online Practice and Assessment

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax
of programming. Through practice exercises and immediate, personalized feed-
back, MyProgrammingLab improves the programming competence of beginning
students who often struggle with the basic concepts and paradigms of popular
high-level programming languages.

A self-study and homework tool, MyProgrammingLab consists of hundreds
of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their
code submissions and offers targeted hints that enable students to figure out what
went wrong—and why. For instructors, a comprehensive gradebook tracks cor-
rect and incorrect answers and stores the code submitted by students for review.

MyProgrammingLab is offered to users of this book in partnership with
Turing’s Craft, the makers of the CodeLab interactive programming exer-
cise system. For a full demonstration, to see feedback from instructors and
students, or to get started using MyProgramminglab in your course, visit
www.myprogramminglab.com.

Instructor Resources

The following supplements are available to qualified instructors only. Visit the
Pearson Education Instructor Resource Center (www.pearsonhighered.com/irc)
or send an e-mail to computing@pearson.com for information on how to access
them:

= Presentation Slides—in PowerPoint.

m Solutions—includes solutions to exercises and programming projects.

» Test Bank with powerful test generator software—includes a wealth of free
response, multiple-choice, and true/false type questions.

m Lab Manual—lab exercises are designed to accompany the topic
progression in the text.

PREFACE

xi

xii

PREFACE

Java Integrated Development Environment (IDE)
Resource Kits

Instructors can order this text with a kit that includes a disk containing 7 popu-
lar Java IDEs (the most recent JDK from Oracle, Eclipse, NetBeans, GRASP,
DrJava, Blue], and TextPad) and access to a website containing written and video
tutorials for getting started in each IDE. For Instructors, ordering information
can be found at www.pearsonhighered.com/cs, or from your campus Pearson
Education sales representative. For Students, if your instructor didn’t request the
Java IDE Resource Kit, links for downloading the IDEs can be found at the book’s
Companion Website.

Features

Key Concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the
end of each chapter.

Listings. All programming examples are presented in clearly labeled listings, fol-
lowed by the program output, a sample run, or screen shot display as appropri-
ate. The code is colored to visually distinguish comments and reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the
Java language are discussed in special highlighted sections with diagrams that
clearly identify the valid forms for a statement or construct. Syntax diagrams for
the entire Java language are presented in Appendix L.

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without
loss of continuity, or focused on specifically as desired. The material in any
Graphics Track section relates to the main topics of the chapter in which it is
found. Graphics Track sections are indicated by a brown border on the edge of
the page.

Summary of Key Concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-Review Questions and Answers. These short-answer questions review
the fundamental ideas and terms established in the preceding section. They are
designed to allow students to assess their own basic grasp of the material. The
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or writ-
ing of code fragments, and a thorough grasp of the chapter content. While the exer-
cises may deal with code, they generally do not require any online activity.

Programming Projects. These problems require the design and implementation
of Java programs. They vary widely in level of difficulty.

MyProgramminglLab. Many of the problems in the book can be done online
in MyProgrammingLab. Through practice exercises and immediate, personal-
ized feedback, MyProgrammingLab improves the programming competence of
beginning students who often struggle with the basic concepts and paradigms of
popular high-level programming languages.

VideoNotes. Presented by the author, VideoNotes explain topics visually
through informal videos in an easy-to-follow format, giving students the extra
help they need to grasp important concepts. Look for this VideoNote icon to see
which in-chapter topics and end-of-chapter Programming Projects are available
as VideoNotes.

Software Failures. These between-chapter vignettes discuss real-world flaws in
software design, encouraging students to adopt sound design practices from the
beginning.

Acknowledgments

I am most grateful to the faculty and students from around the world who have
provided their feedback on previous editions of this book. I am pleased to see
the depth of the faculty’s concern for their students and the students’ thirst for
knowledge. Your comments and questions are always welcome.

I am particularly thankful for the assistance, insight, and attention to detail
of Robert Burton from Brigham Young University. For years, Robert has con-
sistently provided valuable feedback that helps shape and evolve this textbook.
Recently he also performed a revision of the material in Chapter 1 about personal
computing systems that brought it back to a state-of-the-art discussion.

Brian Fraser of Simon Fraser University also has recently provided some excel-
lent feedback that helped clarify some issues in this edition. Such interaction with
computing educators is incredibly valuable.

I also want to thank Dan Joyce from Villanova University, who developed the
Self-Review questions, ensuring that each relevant topic had enough review mate-
rial, as well as developing the answers to each.

I continue to be amazed at the talent and effort demonstrated by the team at
Pearson Addison-Wesley. Michael Hirsch, our editor, has amazing insight and
commitment. His assistant, Stephanie Sellinger, is a source of consistent and helpful
support. Marketing Manager Yez Alayan makes sure that instructors understand
the pedagogical advantages of the text. The cover was designed by the skilled talents
of Suzanne Harbison. Jeff Holcomb and Heather McNally led the production effort.

PREFACE

xiii

xiv PREFACE

The Addison-Wesley folks were supported by a phenomenal team at Nesbitt
Graphics, including Jerilyn Bockorick for the interior design, Rose Kernan for
project management, Diane Paluba for production coordination. We thank all of
these people for ensuring that this book meets the highest quality standards.

Special thanks go to the following people who provided valuable advice to us
about this book via their participation in focus groups, interviews, and reviews.
They, as well as many other instructors and friends, have provided valuable feed-
back. They include:

Elizabeth Adams
David Atkins
Lewis Barnett
Thomas W. Bennet
Gian Mario Besana
Hans-Peter Bischof
Robert Burton
John Chandler
Robert Cohen
Dodi Coreson
James H. Cross 11
Eman El-Sheikh
Christopher Eliot
Wanda M. Eanes
Stephanie Elzer
Matt Evett

Marj Feroe

John Gauch
Chris Haynes
James Heliotis
Laurie Hendren
Mike Higgs
Stephen Hughes
Saroja Kanchi
Karen Kluge
Jason Levy
Peter MacKenzie
Blayne Mayfield
Gheorghe Muresan
Laurie Murphy
Dave Musicant

Faye Navabi-Tadayon

James Madison University
University of Oregon

University of Richmond
Mississippi College

DePaul University

Rochester Institute of Technology
Brigham Young University
Oklahoma State University
University of Massachusetts, Boston
Linn Benton Community College
Auburn University

University of West Florida
University of Massachusetts, Amherst
Macon State College

Millersville University

Eastern Michigan University
Delaware County Community College,
Pennsylvania

University of Kansas

Indiana University

Rochester Institute of Technology
McGill University

Austin College

Roanoke College

Kettering University

Dartmouth College

University of Hawaii

McGill University

Oklahoma State University
Rutgers University

Pacific Lutheran University
Carleton College

Arizona State University

Lawrence Osborne Lamar University

Barry Pollack City College of San Francisco

B. Ravikumar University of Rhode Island

David Riley University of Wisconsin (La Crosse)

Jerry Ross Lane Community College

Patricia Roth Southeastern Polytechnic State University
Carolyn Schauble Colorado State University

Arjit Sengupta Georgia State University

Bennet Setzer Kennesaw State University

Vijay Srinivasan JavaSoft, Sun Microsystems, Inc.

Stuart Steiner Eastern Washington University

Katherine St. John Lehman College, CUNY

Alexander Stoytchev Iowa State University

Ed Timmerman University of Maryland, University College
Shengru Tu University of New Orleans

Paul Tymann Rochester Institute of Technology

John J. Wegis JavaSoft, Sun Microsystems, Inc.

Linda Wilson Dartmouth College

David Wittenberg Brandeis University

Wang-Chan Wong California State University (Dominguez Hills)

Thanks also go to my friends and former colleagues at Villanova University
who have provided so much wonderful feedback. They include Bob Beck, Cathy
Helwig, Anany Levitin, Najib Nadi, Beth Taddei, and Barbara Zimmerman.

Special thanks go to Pete DePasquale of The College of New Jersey for the
design and evolution of the PaintBox project, as well as the original Java Class
Library appendix.

Many other people have helped in various ways. They include Ken Arnold,
Mike Czepiel, John Loftus, Sebastian Niezgoda, and Saverio Perugini. Our apolo-
gies to anyone we may have omitted.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is
a tremendous resource. Their conferences provide an opportunity for educators
from all levels and all types of schools to share ideas and materials. If you are
an educator in any area of computing and are not involved with SIGCSE, you’re
missing out.

Preface vii

Chapter 1 Infroduction 1

1.1 Computer Processing 2

Software Categories 3

Digital Computers 4

Binary Numbers Z

1.2 Hardware Components 10

Computer Architecture 11

Input/Output Devices 12

Main Memory and Secondary Memory 13

The Central Processing Unit 17

1.3 Networks 20

Network Connections 20
Local-Area Networks and

Wide-Area Networks 22

The Internet 23

The World Wide Web 24

Uniform Resource Locators 25

1.4 The Java Programming Language 26

A Java Program 27

Comments 29

Identifiers and Reserved Words 31

White Space 33

1.5 Program Development 36

Programming Language Levels 36

Editors, Compilers, and Interpreters 38

Development Environments 40

Syntax and Semantics 4]

Errors 42

xvii

xviii

CONTENTS

1.6 Object-Oriented Programming 44
Problem Solving 45
Object-Oriented Software Principles 46

Chapter 2 Data and Expressions 57

2.1 Character Strings 58
The print and printin Methods 58
String Concatenation 60
Escape Sequences 63

2.2 Variables and Assignment 65
Variables 65
The Assignment Statement 67
Constants 69

2.3 Primitive Data Types 71
Integers and Floating Points 71
Characters 73
Booleans 74

24 Expressions 75
Arithmetic Operators 75
Operator Precedence 76
Increment and Decrement Operators 80
Assignment Operators 81

2.5 Data Conversion 83
Conversion Techniques 85

2.6 Interactive Programs 87
The Scanner Class 87

2.7 Graphics 92
Coordinate Systems 92
Representing Color 94

2.8 Applets 95
Executing Applets Using the Web 98

2.9 Drawing Shapes 99
The Graphics Class 99

Software Failure:

NASA Mars Climate Orbiter
and Polar Lander

111

Chapter 3 Using Classes and Objects 113
3.1 Creating Objects 114
Aliases 116

3.2 The String Class 118
3.3 Packages 122
The import Declaration 124

3.4 The Random Class 126
3.5 The Math Class 129
3.6 Formatting Output 132
The NumberFormat Class 132

The DecimalFormat Class 134

The printf Method 135

3.7 Enumerated Types 138
3.8 Wrapper Classes 141
Autoboxing 143

3.9 Components and Containers 143
Frames and Panels 144

3.10 Nested Panels 148
3.11 Images 151
Chapter 4 Writing Classes 159
4.1 Classes and Objects Revisited 160
4.2 Anatomy of a Class 162
Instance Data 167

UML Class Diagrams 167

4.3 Encapsulation 169
Visibility Modifiers 170
Accessors and Mutators 171

44 Anatomy of a Method 172
The return Statement 174
Parameters 145

CONTENTS

Xix

