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Preface

Because of its emphasis on basic concepts and fundamental principles, Continuum
Mechanics has an important role in modern engineering and technology. Several under-
graduate courses which utilize the continuum concept and its dependent theories in the
training of engineers and scientists are well established in today’s curricula and their
number continues to grow. Graduate programs in Mechanics and associated areas have
long recognized the value of a substantial exposure to the subject. This book has been
written in an attempt to assist both undergraduate and first year graduate students in
understanding the fundamental principles of continuum theory. By including a number of
solved problems in each chapter of the book, it is further hoped that the student will be
able to develop his skill in solving problems in both continuum theory and its related fields
of application.

In the arrangement and development of the subject matter a sufficient degree of con-
tinuity is provided so that the book may be suitable as a text for an introductory course in
Continuum Mechanics. Otherwise, the book should prove especially useful as a supple-
mentary reference for a number of courses for which continuum methods provide the basic
structure. Thus courses in the areas of Strength of Materials, Fluid Mechanics, Elasticity,
Plasticity and Viscoelasticity relate closely to the substance of the book and may very well
draw upon its contents.

Throughout most of the book the important equations and fundamental relationships
are presented in both the indicial or ‘“tensor” notation and the classical symbolic or ‘“vector”
notation. This affords the student the opportunity to compare equivalent expressions and
to gain some familiarity with each notation. Only Cartesian tensors are employed in the
text because it is intended as an introductory volume and since the essence of much of the
theory can be achieved in this context.

The work is essentially divided into two parts. The first five chapters deal with the
basic continuum theory while the final four chapters cover certain portions of specific
areas of application. Following an initial chapter on the mathematics relevant to the
study, the theory portion contains additional chapters on the Analysis of Stress, Deforma-
tion and Strain, Motion and Flow, and Fundamental Continuum Laws. Applications are
treated in the final four chapters on Elasticity, Fluids, Plasticity and Viscoelasticity. At
the end of each chapter a collection of solved problems together with several exercises for
the student serve to illustrate and reinforce the ideas presented in the text.

The author acknowledges his indebtedness to many persons and wishes to express his
gratitude to all for their help. Special thanks are due the following: to my colleagues,
Professors W. A. Bradley, L. E. Malvern, D. H. Y. Yen, J. F. Foss and G. LaPalm each of
whom read various chapters of the text and made valuable suggestions for improvement;
to Professor D. J. Montgomery for his support and assistance in a great many ways; to
Dr. Richard Hartung of the Lockheed Research Laboratory, Palo Alto, California, who
read the preliminary version of the manuscript and gave numerous helpful suggestions; to
Professor M. C. Stippes, University of Illinois, for his invaluable comments and suggestions;
to Mrs. Thelma Liszewski for the care and patience she displayed in typing the manuscript;
to Mr. Daniel Schaum and Mr. Nicola Monti for their continuing interest and guidance
throughout the work. The author also wishes to express thanks to his wife and children
for their encouragement during the writing of the book.

Michigan State University GEORGE E. MASE
June 1970
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Chapter 1

Mathematical Foundations

1.1 TENSORS AND CONTINUUM MECHANICS
Conti _ Jeal ith physical o hicl ind i ¢
i i i . At the same time, these

physical quantities are very often specified most conveniently by referring to an appropriate
system of coordinates. Mathematically, such quantities are represented by tensors.

As a mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
quantities, known as its components. Specifying the components of a tensor in one
coordinate system determines the components in any other system. Indeed, the law of
transformation of the components of a tensor is used here as a means for defining the
tensor. Precise statements of the definitions of various kinds of tensors are given at the
point of their introduction in the material that follows.

The physical laws of continuum mechanics are expressed by tensor equations. Because
tensor transformations are linear and homogeneous, such tensor equations, if they are valid
in one coordinate system,a\/rne’%im;mmroer coordinate system. This {upariance of
tensor equations under a coordinate transformation is one of the principal reasons for the
usefulness of tensor methods in continuum mechanics.

12 GENERAL TENSORS. CARTESIAN TENSORS. TENSOR RANK.

In dealing with general coordinate transformations between arbitrary curvilinear
coordinate systems, the tensors defined are known as gegezal tensors. When attention is
restricted to transformations from one homogeneous coordinate system to another, the
tensors involved are referred to as Cartesign tensors. Since much of the theory of con-
tinuum mechanics may be developed in terms of Cartesian tensors, the word “tensor” in
this book means “Cartesian tensor” unless specifically stated otherwise.

Tensors may be classified by rank, or order, according to the particular form of the
transformation law they obey. This same classification is also reflected in the number of
components a given tensor possesses in an n-dimensional space. Thus in a three-dimensional
Euclidean space such as ordinary physical space, the number of components of a tensor is

\i{ﬁ where N is the order of the tensor. Accordingly a tensor of order zero is specified in
any coordinate system in three-dimensional space by one component. Tensors of order
zero are called scalars. Physical quantities having magnitude only are represented by
scalars. Tensors of order one have three coordinate components in physical space and are
known as pectors. Quantities possessing both magnitude and direction are represented by
vectors. Second-order tensors correspond t adics. Several important quantities in con-
tinuum mechanics are represented by tensors of rank two. Higher order tensors such as
triadics, or tensors of order three, and tetradics, or tensors of order four are also defined
and appear often in the mathematics of continuum mechanics.
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13 VECTORS AND SCALARS

Certain physical quantities, such as force and velocity, which possess both magnitude
and direction, may be represented in a three-dimensional space by directed line segments
that obey the parallelogram law of addition. Such directed line segments are the geometrical
representations of first-order tensors and are called vectors. Pictorially, a vector is simply
an arrow pointing in the appropriate direction and having a length proportional to the mag-
nitude of the vector. Equal vectors have the same direction and equal magnitudes. A unit
vector is a vector of unit length. The null or zero vector is one having zero length and an
QJunspecified direction. The negative of a vector is that vector having the same magnitude
but opposite direction.

Those physical quantities, such as mass and energy, which possess magnitude only are
represented by tensors of order zero which are called scalars.

In the symbolic, or Gibbs notation, vectors are designated by bold-faced letters such as
a, b, etc. Scalars are denoted by italic letters such as a, b, A, etc. Unit vectors are further
distinguished by a caret placed over the bold-faced letter. In Fig. 1-1, arbitrary vectors a
and b are shown along with the unit vector € and the pair of equal vectors ¢ and d.

N T A

Fig.1-1

The magnitude of an arbitrary vector a is written simply as a, or for emphasis it may
be denoted by the vector symbol between vertical bars as |a|.

14 VECTOR ADDITION. MULTIPLICATION OF A VECTOR BY A SCALAR

Vector addition obeys the parallelogram law, which defines the vector sum of two vectors
as the diagonal of a parallelogram having the component vectors as adjacent sides. This
law for vector addition is equivalent to the triangle rule which defines the sum of two vectors
as the vector extending from the tail of the first to the head of the second when the summed
vectors are adjoined head to tail. The graphical construction for the addition of a and b
by the parallelogram law is shown in Fig. 1-2(e¢). Algebraically, the addition process is
expressed by the vector equation

at+tb=b+a=c (1.1)

Vector subtraction is accomplished by addition of the negative vector as shown, for
example, in Fig. 1-2(b) where the triangle rule is used. Thus
a—b=-b+a=4d (1.2)

The operations of vector addition and subtraction are commutative and associative as
illustrated in Fig. 1-2(c), for which the appropriate equations are

(a+b)+g =a+(b+g) = h (1.8)

(a) (b)
Fig.1-2
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Multiplication of a vector by a scalar produces in general a new vector having the same
direction as the original but a different length. Exceptions are multiplication by zero to
produce the null vector, and multiplication by unity which does not change a vector. Multi-
plication of the vector b by the scalar m results in one of the three possible cases shown in
Fig. 1-3, depending upon the numerical value of m.

/mb b b

mb
b
mb
m>1 0<m<1 m<0
Fig.1-3

Multiplication of a vector by a scalar is associative and distributive. Thus

m(nb) = (mn)b = n(mb) (1.4)
(m+n)b = (n+m)b = mb+ nb (1.5)
m(a+b) = m(b+a) = ma+ mb (1.6)

In the important case of a vector multiplied by the reciprocal of its magnitude, the
result is a unit vector in the direction of the original vector. This relationship is expressed

by the equation ~
b = b/b (1.7)

1.5 DOT AND CROSS PRODUCTS OF VECTORS
The dot or scalar product of two vectors a and b is the scalar

A= a'b = b-a = abcosé (1.8)

in which 6 is the smaller angle between the two vectors as shown in Fig. 1-4(a). The dot
product of a with a unit vector € gives the projection of a in the direction of e.

(b)
Fig.1-4
The cross or vector product of a into b is the vector v given by
v = aXb = —bXxa = (absinf)e (1.9)

in which ¢ is the angle less than 180° between the vectors a and b, and € is a unit vector
perpendicular to their plane such that a right-handed rotation about € through the angle
0 carries a into b. The magnitude of v is equal to the area of the parallelogram having
a and b as adjacent sides, shown shaded in Fig. 1-4(b). The cross product is not commutative.



4 MATHEMATICAL FOUNDATIONS [CHAP. 1

The scalar triple product is a dot product of two vectors, one of which is a cross product.
a*(bxec) = (aXb)re = arbXec = (1.10)

As indicated by (1.10) the dot and cross operation may be interchanged in this product.
Also, since the cross operation must be carried out first, the parentheses are unnecessary
and may be deleted as shown. This product is sometimes written [abc] and called the box
product. The magnitude A of the scalar triple product is equal to the volume of the
parallelepiped having a, b, ¢ as coterminous edges.

The vector triple product is a cross product of two vectors, one of which is itself a
cross product. The following identity is frequently useful in expressing the product of a

crossed into b X c.
ax(bxe) = (a*c)b— (a*b)e = w (1.11)

From (1.11), the product vector w is observed to lie in the plane of b and c.

16 DYADS AND DYADICS M-z

The indeterminate vector product of a and b, defined by writing the vectors in juxtaposi-
tion as ab is called a dyad. The indeterminate product is not in general commutative, i.e.
ab = ba. The first vector in a dyad is known as the antecedent, the second is called the
consequent. A dyadic D corresponds to a tensor of order two and may always be represented
as a finite sum of dyads

D = ajb; + ashby + - -+ + anby (1.12)

which is, however, never unique. In symbolic notation, dyadics are denoted by bold-faced
sans-serif letters as above.

If in each dyad of (1.12) the antecedents and consequents are interchanged, the resulting

dyadic is called the cg@jugate dyadic of D and is written

D. = bia; + beas + - - - + byan (1.18)

If each dyad of D in (1.12) is replaced by the dot product of the two vectors, the result is a

scalar known as the scalar of the dyad;&c D and is written

D, = al-bl + az*bs + -+ + an by (1.14)

If each dyad of D in (1.12) is replaced by the cross product of the two vectors, the result is

called the vector of the d'c!adic D and is written

D, = aijXbi+a:Xbs+ -+ +avXbn (1.15)
It can be shown that D, D; and D, are independent of the representation (1.12).

The indeterminate vector product obeys the distributive laws

a(b+c) = ab + ac (1.16)
(a+b)e = ac + be (1.17)
(a+b)(c+d) = ac+ ad + bc + bd (1.18)
and if A and p are any scalars,
(A +p)ab = Xab + pab (1.19)

(Aa)b = a(Ab) = iab (1.20)
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If v is any vector, the dot products v+D and D-v are theectors flefined respectively by

v'D = (v+a)b; + (vraz)bya+ -+ + (vean)by = u (1.21)
D:v = aj(bi*v)+ as(berv)+ --- +an(byv'Vv) = W (1.22)
In (1.21) D is called the postfactor, and in (1.22) it is called the prefactor. Two dyadics D
and E are'equal if and only if for every vector v, either
v'D = v-E or D-'v =E'v (1.23)
The unit dyadic, or idemfactor 1, is the dyadic which can be represented as
I = &/ + &6 + €563 (1.24)

where €, €, €3 constitute any orthonormal basis for three-dimensional Euclidean space
(see Section 1.7). The dyadic I is characterized by the property

for all vectors v. Pv=vl=y (1.23)
The cross products v D and D X v are the defined respectively by

"YXD — (vXanhi + (vXahyF + (vXax)by = F (1.26)

DXv = ai(biXv)+as(baXv)+ --- +an(byXv) = G (1.27)

The dot product of the dyads ab and ed ismd defined by
ab:cd = (b-c)ad (1.28)
From (1.28), the dot product of any two dyadics D and E is the dyadic
D:-E = (ajby+ashs+ -+ - +anby) * (c1di +codz+ - - - + endn)

= (b1*ci1)aid: + (bi-cz)aids + -+ + (bnv cn)andy = G (1.29)
The dyadics D and E are said to be reciprocal of each other if
E'D=D-E=1I (1.30)

For reciprocal dyadics, the notation E=D"! and D =E~! is often used.

Double dot and cross products are also defined for the dyads ab and cd as follows,

ab : cd = (a*c)(b:d) = A, ascalar (1.81)
abXed = (axc)(b-d) = h, avector (1.82)
aby ed = (a-c)(bxd) =g, avector (1.33)
abced = (axc)(bxd) = uw, adyad (1.34)

From these definitions, double dot and cross products of dyadics may be readily developed.
Also, some authors use the double dot product defined by

ab:-cd = (b-c)(a-d) = A, ascalar (1.85)
A dyadic D is said to be self-conjugate, or sqmmetm’c, if
NS N NN
D = D. (1.86)
NS N~
and anti-self-conjugate, or anti-szimmetric, if

D = =D, (1.87)
Every dyvadic may be expressed uniquely as the sum of a symmetric and anti-symmetric
dyadic. For the arbitrary dyadic D the decomposition is

D= 4D+D)+4D—-D.) = G+H (1.88)
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for which G. = 4(Dc+ (D)) = #(D.+D) = G (symmetric) (1.39)
and H. = 4(D.— (Dc)) = #(D.—D) = —H (anti-symmetric) (1.40)
Uniqueness is established by assuming a second decomposition, D = G* + H*. Then
G*+H* = G+H (1.41)
and the conjugate of this equation is
G*—H* = G—H (1.42)

Adding and subtracting (1.41) and (1.42) in turn yields respectively the desired equalities,
G*=G and H* =H.

1.7 COORDINATE SYSTEMS. BASE VECTORS. UNIT VECTOR TRIADS

A vector may be defined with respect to a particular coordinate system by specifying
the components of the vector in that system. The choice of coordinate system is arbitrary,
but in certain situations a particular choice may be advantageous. The reference system
of coordinate axes provides units for measuring vector magnitudes and assigns directions
in space by which the orientation of vectors may be determined.

The well-known rectangular Cartesian coordi-
nate system is often represented by the mutually
perpendicular axes, Oxyz shown in Fig. 1-5. Any
vector v in this system mgy' be expressed as a
linear combination.of thtree arbitrary, nonzero,
noncoplanar vectors of the system, which are
called base vectors, For base vectors a,b,c and
suitably cHoseI} scalar coefficients A, p, v the vector
v is given by

v = Aa+ ub + ve (143)

Base vectors are by hypothesis linearly independ-
ent, i.e. the equation
A+ pb+ve =0 (1.44)

is satisfied only if A=pu=v=0. A set of base
vectors in a given coordinate system is said to
constitute a Jgggj\s for that system. Fig. 1-5

The most frequent choice of base vectors for the rectangular Cartesian system is the

set of unit vectors ’i\, ’j\, k along the coordinate axes as shown in Fig. 1-5. These base vectors
constitute a right-handed unit vector triad, for which

ixi=k fxk=1 kxi=7] (1.45)
and ’i\-’i\:‘j\-’j\:f(-ﬁzl
i-5=5k=k-i=0 (1.46)

Such a set of base vectors is often called an orthonormal basis.
In terms of the unit triad ’i\, ’j\, i;, the vector v shown in Fig. 1-6 below may be expressed by
v = vi+ v, + vk (1.47)

in which the Cartesian components
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A

Vr = V*i = VcCOSa
A

Vy = v*] = vcosf
A

v. = vk = wcosy

are the projections of v onto the coordinate axes.
The unit vector in the direction of v is given ac-
cording to (1.7) by

ev = V/?)

= (cos a)? + (cos ,8)/]'\ + (cos y)l’; (1.48)
Since v is arbitrary, it follows that any unit vec- ’
tor will have the direction cosines of that vector
as its Cartesian components.
In Cartesian component form the dot product
of a and b is given by
a‘b = (a:1+a,5+ak)- (b:1+0,7+bk)
= @bz + ayby + a:b. (1.49) Fig.1-6
For the same two vectors, the cross product a X b is
axXb = (ayb:—a:by)i + (@br— a:02)] + (azby — aybo)k (1.50)
This result is often presented in the determinant form
i § k
axb = |a: a a. (1.51)
b:c by bz

in which the elements are treated as ordinary numbers. The triple scalar product may also
be represented in component form by the determinant

Uz Qy G
[abe] = |bz by D. (1.52)
€z Cy Cs

In Cartesian component form, the dyad ab is given by
ab = (@1 +ay] +ak)(bad + byj + bk)
= axbx’i\’f + axbyAiEi\ + a/xbz’i\ﬁ
+abdi+ abii +ab ik
+ a:bk 1+ @b,k + b kk (1.53)
Because of the nine terms involved, (1.53) is known as the monion form of the dyad ab.
It is possible to put any dyadic into nonion form. The nonion form of the idemfactor in
terms of the unit triad ’i\, f,l? is given by
1=1i+57+kk (1.54)
In addition to the rectangular Cartesian coordinate system already discussed, curvi-
linear coordinate systems such as the cylindrical (R, 6,z) and spherical (r,6,¢) systems
shown in Fig. 1-7 below are also widely used. Unit triads (€, €s, €:) and (€, €, &) of base
vectors illustrated in the figure are associated with these systems. However, the base

vectors here do not all have fixed directions and are therefore, in general, functions of
position.



8 MATHEMATICAL FOUNDATIONS [CHAP. 1

x

(a) Cylindrical (b) Spherical
Fig.1-7

18 LINEAR VECTOR FUNCTIONS. DYADICS AS LINEAR VECTOR OPERATORS

A vector a is said to be a function of a second vector b if a is determined whenever
b is given. This functional relationship is expressed by the equation

a = f(b) (1.55)
The function f is said to be linear when the conditions
NN SN AN~
f(b+c¢) = f(b) + f(c (1.56)
f(Ab) = XM(b (1.57)
are satisfied for all vectors b and ¢, and for any scalar A.

Writing b in Cartesian component form, equation (1.55) becomes

a = f(bad + byj + bek) (1.58)
which, if f is linear, may be written
a = b.A(}) + b,f(3) + baA(k) (1.59)
In (1.59) let £(i)=u, £3)=v, f(k)=w, so that now
a=uib+v(ib+wkb = @uitvi+wk)b (1.60)
which is recognized as a dyadic-vector dot product and may be written
a=D-b (1.61)

where D = ui+ v§ + wk. This demonstrates that any linear vector function f may be
expressed as a dyadic-vector product. In (1.61) the dyadic D serves as a linear wector
operator which operates on the argument vector b to produce the image vector a.

19 INDICIAL NOTATION. RANGE AND SUMMATION CONVENTIONS

The components of a tensor of any order, and indeed the tensor itself, may be represented
clearly and concisely by the use of the Mi_my_l_ﬂgmtio_n. In this notation, letter indices,
either subscripts or superscripts, are appended to the generic or kernel letter representing
the tensor quantity of interest. Typical examples illustrating use of indices are the tensor

symbols ) i
ai, b, Ty, F;’, €y, R
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In the “mixed” form, where both subscripts and superscripts appear, the dot shows that j
is the second index.

Under the rules of indicial notation, a letter index may occur either once or twice in a
iven term. When an index occurs unrepeated in a term, that index is understood to take
on the values 1,2, ..., N where N is a specified integer that determines the range of the
index. Unrepeated indices are known as_free indices. The tensorial rank of a given term
is equal to the number of free indices. appéaring in that term. Also, correctly written
tensor equations have the same letters as free indices in every term.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called summation conven-
tion, repeated indices are often referred to as dummy indices, since their replacement by
any other letter not appearing as a free index does not change the meaning of the term in
which they occur. In general, no index occurs more than twice in a properly written term.
If it is absolutely necessary to use some index more than twice to satisfactorily express a
certain quantity, the summation convention must be suspended.

Thwwgw&wmwmuw%mmmwer
W@Wn. Tensors of first order are denoted by
kernel letters bearing one free index. Thus the arbitrary vector a is represented by a symbol
having a single subscript or superscript, i.e. in one or the other of the two forms,

ai, ai

The following terms, having only one free index, are also recognized as first-order tensor
quantities:
aiibj, Fixk, R%qp, €ijthivi

Second-order tensors are denoted by symbols having two free indices. Thus the arbitrary
dyadic D will appear in one of the three possible forms

Di", DlJ or D’;j, D,;j

In the “mixed” form, the dot shows that j is the second index. Second-order tensor
quantities may also appear in various forms as, for example,

Aijip, B 5, 8ijurvk

By a logical continuation of the above scheme, third-order tensors are expressed by symbols
with three free indices. Also, a symbol such as A which has no indices attached, represents
a scalar, or tensor of zero order.

In ordinary physical space a basis is composed of three, noncoplanar vectors, and so
any vector in this space is completely specified by its three components. Therefore the
range on the index of a:, which represents a vector in physical three-space, is 1,2,3.
Accordingly the symbol a; is understood to represent the three components ai, as,as. Also,
a; is sometimes interpreted to represent the ith component of the vector or indeed to rep-
resent the vector itself. For a range of three on both indices, the symbol A;; represents
nine components (of the second-order tensor (dyadic) A). The tensor Aj; is often presented
explicitly by giving the nine components in a square array enclosed by large parentheses as

Ay A Ay

Aij = A21 A22 Azs (1.62)
ASI A32 A33
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In the same way, the components of a first-order tensor (vector) in three-space may be
displayed explicitly by a row or column arrangement of the form

a1
ai = (a1, a2,a3) or @ = |a (1.63)
as

In general, for a range of N, an nth order tensor will have N* components.

The usefulness of the indicial notation in presenting systems of equations in compact
form is illustrated by the following two typical examples. For a range of three on both
1 and 7 the indicial equation

Xi = CijRj (1'64)

represents in expanded form the three equations
X1 = C1121 + C1222 + C1323
Lo = C2121 + C2222 + C2323 (1.65)
T3 = C3121 + C3222 + C33%3
For a range of two on 7 and 7, the indicial equation
Aij = BipCiqDypq (1.66)
represents, in expanded form, the four equations
A1 = BuCuDiy + B11CiDie + B1:C11Ds1 + B12C12D2s
Az = B1uCuD1 + B1iCs2D1s + B12C21D21 + B12C22Dss
Asi = B9CuDi + B21C12D1s + B2sC11Ds1 + B23Ci2Dos
Ass = B21C21D11 + B21C2:D12 + B22C21Dsy + BysCosDos

For a range of three on both ¢ and j, (1.66) would represent nine equations, each having
nine terms on the right-hand side.

(1.67)

1.10 SUMMATION CONVENTION USED WITH SYMBOLIC NOTATION

The summation convention is very often em-
ployed in connection with the representation of
vectors and tensors by indexed base wvectors
written in the symbolic notation. Thus if the
rectangular Cartesian axes and unit base vectors
of Fig. 1-5 are relabeled as shown by Fig. 1-8,
the arbitrary vector v may be written

vV = ’1)181 + ’1)262 + ’0383 (1.68)

in which v, v., v3 are the rectangular Cartesian
components of v. Applying the summation con-
vention to (1.68), the equation may be written in
the abbreviated form

v = & (1.69)
where ¢ is a summed index. The notation here is
essentially symbolic, but with the added feature
of the summation convention. In such a “com-
bination” style of notation, tensor character is
not given by the free indices rule as it is in true
indicial notation. Fig. 1-8
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Second-order tensors may also be represented by summation on indexed base vectors.
Accordingly the dyad ab given in nonion form by (1.53) may be written

ab = (aié‘i)(b,-'e‘j) = a;bjé‘;é‘,- (1.70)

It is essential that the sequence of the base vectors be preserved in this expression. In
similar fashion, the nonion form of the arbitrary dyadic D may be expressed in compact

notation by ~n
D = D24 (1.71)

111 COORDINATE TRANSFORMATIONS. GENERAL TENSORS

Let ' represent the arbitrary system of coordinates «!,2% x*® in a three-dimensional
Euclidean space, and let 6! represent any other coordinate system 63,62 63 in the same
space. Here the numerical superscripts are labels and not exponents. Powers of x may
be expressed by use of parentheses as in (z)? or (z)°. The letter superscripts are indices
as already noted. The coordinate transformation equations

6+ = G4, 2% 2%) (1.72)

assign to any point (%, 22, %) in the ' system a new set of coordinates (6%, 62, 6°) in the ¢
system. The functions 6 relating the two sets of variables (coordinates) are assumed to
be single-valued, continuous, differentiable functions. The determinant

o0t 30" a6
ox! o9x® oxd

962  06% 0962
I = @ W (1.75)
dx!  ox? ox®
or, in compact form, .
J = %) (1.74)

is called the Jacobian of the transformation. If the Jacobian does not vanish, (1.72)
possesses a unique inverse set of the form

ai = 2i(6Y, 0, 6%) (1.75)

The coordinate systems represented by i and ¢ in (1.72) and (1.75) are completely general
and may be any curvilinear or Cartesian systems.

From (1.72), the differential vector d#i is given by

T

ot = e dx (1.76)
This equation is a prototype of the equation which defines the class of tensors known as
contravariant vectors. In general, a set of quantities b* associated with a point P are said
to be the components of a contravariant tensor of order one if they transform, under a
coordinate transformation, according to the equation
a6t .
Pl
where the partial derivatives are evaluated at P. In (1.77), b’ are the components of the
tensor in the « coordinate system, while b’! are the components in the 4t system. In general

bt = (1.77)



