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Above all, this is a text on mathematics. The subject is calculus, and the emphasis is
on the three basic concepts: limit, derivative, and integral.

This text is designed for a standard introductory single and multivariable calculus
sequence. Our fundamental goal in preparing the Seventh Edition has been to pre-
serve and enhance the notable strengths that characterized previous editions, in-
cluding:

* An emphasis on the mathematical exposition—an accurate, understandable treat-
ment of the topics.

« A clear, concise approach. Basic ideas and important points are not obscured by
excess verbiage.

* An appropriate level of rigor. Mathematical statements are careful and precise,
and all important theorems are proved. This formality is presented in a way that
is completely accessible to the beginning calculus student.

- A balance of theory and applications, illustrated by many examples and exercises.

At the same time, we recognize that with the rapid advances in computer technol-
ogy and the current scrutiny of mathematics education at all levels, the teaching of
calculus is undergoing a serious examination. Thus, an equally important and parallel
goal of the Seventh Edition has been to incorporate modern technology and current
trends without sacrificing the acknowledged strengths of the text.

FEATURES OF THE SEVENTH EDITION

Problem-Solving Skills and Real-World Applications
Over 2000 new problems have been added to the Seventh Edition.

« In order to develop students’ problem-solving skills, we have significantly in-
creased the number of problems at all levels. A large number of challenging and
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routine problems are now available in all exercise sets. Many additional
medium-level problems are included to assist students in developing the
understanding necessary to attack the challenging problems. In some prob-
lems, students are called upon to interpret and justify their answers to im-
prove their analytical and communication skills.

* An even wider variety of real-world applications motivates students’ study of
mathematical topics.

* More illustrations have been added to exercise sets to provide students with visual
support as they devise their problem-solving strategies.

Technology

Because the use of graphing calculators and/or computer algebra systems has in-
creased in calculus courses, we have considerably expanded the application of tech-
nology in the text. We do not attempt to teach any particular technology and so use a
generic approach. Technology problems are clearly designated with an icon (D) and
may be skipped by instructors who prefer that their students not use calculators or
computers.

+ New technology-based examples appear within the chapter discussions of the
material. These support the numerous exercises requiring the use of a graphics
calculator or other graphing software located in the end-of-section problems
sets.

« ““Projects and Explorations Using Technology,” a set of problems that requires a
combination of approaches involving both analytical and technology skills, ends
cach chapter. As their title suggests, these problems are also suitable for use by
students working in groups. A few of the problems introduce concepts to be
developed later in the text, while others explore realistic applications of topics that
have already been studied.

Increased Emphasis on Visualization

We recognize the importance of visualization in developing students’ understanding of
mathematical concepts. For that reason:

- All the artwork from the previous edition has been redrawn for increased clarity
and understanding.

- Over 130 new figures have been added.

. Representations in three dimensions are now in full color for increased geometric
understanding and include many new computer-generated figures of curves and
surfaces in space.

Early Introduction of Differential Equations

A subsection on differential equations (separable equations) has been added to the
Exponential Growth and Decay section of Chapter 7, allowing exercises on differential
equations to be used throughout the rest of the book.



CONTENT AND ORGANIZATION CHANGES
IN THE SEVENTH EDITION

In response to the evolutionary state of the current calculus curriculum, many changes
have been made in organization and content to meet the needs of today’s students and
instructors.

Precalculus Review (Chapter 1)

* This material, which provides a brief yet comprehensive review of the precalculus
topics basic to the study of calculus, has been rewritten and expanded.

* The real number system and the real line are now discussed; the section covering
methods for solving inequalities in one variable has been reorganized; and the
treatment of analytic geometry —the Cartesian coordinate system, straight lines,
and the conic sections— has been expanded.

* The treatment of the function concept, the elementary functions, and graphing
(including technology) has been reorganized and expanded.

* The treatment of one-to-one functions and inverses has been moved to Chapter 7,
where it serves to connect logarithmic and exponential functions.

= The brief section on proofs now includes mathematical induction with examples
and exercises.

Limits and Continuity (Chapter 2)

- To improve students’ understanding of these critical topics, a few of the discus-
sions have been expanded and some figures have been added.

« The section on limits now includes a technology approach, illustrated by examples
and new exercises.

+ The derivative in various forms is introduced in the exercises.

Differentiation and Applications of the Derivative (Chapters 3 and 4)

- The interpretations of the derivative as a rate of change are treated in one section
rather than two, and the coverage includes examples from economics.

- Differentiation of inverse functions has been moved to Chapter 7.

- The derivative of rational powers is now approached through implicit differentia-
tion.

- The treatment of applications of the derivative has been reorganized slightly to
emphasize the two objectives of Chapter 4: optimization and curve sketching.

Integration and Applications of the Integral (Chapters 5 and 6)

- The interpretation of the definite integral as “area” has been expanded: a subsec-
tion on “‘signed area” has been added.

- The treatment of u-substitutions has been streamlined; for example, trigonometric
integrals are now incorporated in the change of variables section rather than as a
separate section.

. The introduction of Riemann sums serves to introduce and motivate the approach
taken in the applications chapter.

- The treatments of the various applications of the definite integral have been ex-
panded.

PREFACE Vv
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The Transcendental Functions (Chapter 7)

. !nverse functions and the calculus of inverse functions are treated here rather than
In separate sections earlier in the text.

. lptegration by parts has been moved to Chapter 8, Techniques of Integration, and
simple harmonic motion has been moved to Chapter 18, Differential Equations.

* The treatment of applications of exponential and logarithmic functions now in-
cludes a subsection on differential equations (separable equations).

* The treatment of the inverse trig functions now includes the inverse secant func-
tion.

Techniques of Integration (Chapter 8)

* Integration by parts has been moved from Chapter 7 to Section 8.2, and the section
on partial fractions now follows trig substitutions.

* Almost all the treatments have been expanded, with many new examples, in-
creased coverage of reduction formulas, and a discussion of hyperbolic substitu-
tions.

Conic Sections; Polar Coordinates and Parametric Equations
(Chapter 9)

* This new chapter combines material from two chapters in the previous edition.
The conic sections are treated in one section; translation of axes and rotation of
axes have been moved to Chapter | or the Appendices.

= The treatment of arc length has been softened a little: the proof based on the least
upper bound axiom has been replaced by an intuitive argument.

Sequences and Series (Chapters 10 and 11)

* The least upper bound axiom now serves as a prelude to sequences, and there is
more emphasis on boundedness in the treatment of sequences.

* The treatment of indeterminate forms has been modified: The “other” indeter-
minate forms—differences, products, exponential forms—are now treated in a
separate subsection rather than integrating them with the 0/0 and %/ forms.

* The treatment of power series has been expanded slightly; there are some new
examples and figures, and the Lagrange form of the remainder is stated explicitly
and used to derive bounds on the remainder.

Multivariable Calculus (Chapters 12-17)

« Substantial changes were not necessary in the treatment of these chapters. The
major effort in this edition was to upgrade the illustrations and the exercises.

* A large number of computer-generated figures illustrating curves and surfaces in
space have been added, and full color has been used where it is most helpful to
students’ understanding— in three-dimensional figures.

Differential Equations (Chapter 18)

- The material on differential equations has been thoroughly updated and revised to
include numerous examples and applications throughout the chapter.

* A new introductory section familiarizes students with the basic terminology and
concepts of differential equations.



FEATURES OF THE BOOK

Concise exposition The concepts

2.5 THE PINCHING THEOREM:; TRIGONOMETRIC LMITS m 111

of calculus are presented clearly and ac-
curately without hand waving.

Theorems and proofs Highlighted
theorems direct students to accurate
mathematical statements. Most proofs

are included to provide a high level of
precision.

\

B 2.5 THE PINCHING THEOREM; TRIGONOMETRIC LIMITS

Figure 2.5.1 shows the graphs of three functions £, g. h Suppose that, as suggested by
the figure, for x close 1o ¢, f is trapped between g and . (The values of these functions
atcitselfare irrelevant.) If. as x tends to ¢. both g(x) and A(x) tend to the same limit L.,
then f(x) also tends to L

This idea is made precise in what we call the pinching
theorem.

Figure 2.5.1

THEOREM 2.5.1 THE PINCHING THEOREM
Letp > 0. Suppose that, for ali x such that 0 < |x — ¢| < p,

h(x) < fix) < g(x).
if
lim h(x) =L  and lim g(x) = L,
xe xmc
then
lim fix) = L.

PROOF Let e > 0. Letp > 0 be such that

if 0«

260 m CHAPTER 4 THE MEAN-VALUE THEOREM AND APPLICATIONS

x—cl<p. then  Al(x) < fix) < glx),
Choose &, > 0 such that
if 0<|x—c|<3é,, then L —e< hx)<L + €
Choose &, > 0 such that
X then L~ e<g(x)< L+ e

8,1, For x satisfying 0 < |x — ¢| < 8, we have
L-e<hx)<fily<g)<L+e
Example 3 Figure 4.7.10 is a computer-generated graph of the function
o cosx fix)y-Ll<e O
Ast— 0, flx)— —=;asx — 0", fix)— % The line x = 0 (the y-axis) is a vertical
asymptote
Figure 4.7.10 \
As x — +x
fio =X o New examples To facilitate stu-
This follows from the fact that dents understgndmg, many examples
st oL forall have been revised and new examples
S el ors

and 1/[x| =0 as x — *=
tote.  Note that /is an odd function [ /(

respect to the onigin. J

Example 4 Find the vertical and horizontal asymptotes, if any, of the function

Thus, the line v

x)

. NG

2(x) = —— -

£ vl (- IF
SOLUTION The domain of g is 0 < x < = x # 1. Asx— I, g(x) ==
line v = 1 is a vertical asymptote.

apparent by writing

\(w
v+l =Va

2lx)

The behavior of g as x — = can be made more

Xt — 2%+ 1 |
v

Now. it is easy to see that g(x) —0 as x—=

horizontal asymptote. 4

|=fl=

+

2
-+
X

7

The line

0 (the v-axis) is a horizontal asymp-
f(x)] so its graph is symmetric with

0 (the x-axis) is a

have been added.

Thus, the




360 m CHAPTER 6 SOME APPLICATIONS OF THE INTEGRAL

" :
‘ | '

=
T =

| Improved visualization A com-
Figure 6.2.12 pletely new and expanded illustration
program, including three-dimensional

PROOF  The cross section with coordinate x is a washer of outer radius f(x), inner

radius g(x), and area illustrations in full color, provides a
Al = al S = alg)) = ([ AP - [g)]) 1QIs 9 ati o
We can get the volume of the solid by integrating this function fromato b. 1 bener VISUdl representdtlon Of con-
cepts.

Suppose now that the boundaries are functions of v rather than v (see Figure
6.2.13). By revolving (2 about the v-axis, we obtain a solid. It is clear from (6.2.4)
that in this case

6.2.6)

4
f m[FOIP = [GO)P) dv. (washer method about y-axis)

Figure 6.2.13
6.6 FLUID PRESSURE AND FLUID FORCES m 389

Example 2 A metal plate in the form of a trapezoid is affixed 1o a vertical dam as in
Figure 6.6.5. The dimensions shown are given in meters; the weight density of water
in the metric system is approximately 9800 newtons per cubic meter. Find the force
on the plate.

Real-world applications Students
see how the concepts and methods of
Ca]CU!US C.OnneCt W]th ]!’npor.tanl PrOb_ SOLWTON  First we find the width of the plate x meters below the water level. By
lems in science and engineering. similar triangles (sce Figure 6.6.6)

1=48 - x) so that wx) =8+ 2t =16 — x

Figure 6.6.5

0 . water leve
4 - -" E
o — -
8
8 '
| 8 X
Figure 6.6.6

The force against the plate is
3 s
f 9800x(16 — x) dx = 9800 { (16x ) dx
4 Ja

%
B 4»«)0[1&\-' -4 I = 2.300,000 newtons.  J




New exercises The exercise sets —
have been revised and over 2000 new
problems added, resulting in an im-
proved balance between drill problems
and more challenging exercises in-
volving either theory or applications.

Technology problems Problems
marked by the icon encourage stu-
dents to use technology as a tool to
enhance understanding and problem-
solving skills.

26. fix) =

x, m
27, fx) = sint x — 3sinx, 0<x<
28. f(x) = s 0<y<2m

29. flx) = sinxcosx — 3sinx +2x, 0<x< 27

30. fix) = 2sin’x — 3sinx, 0<x<m

31. Prove Theorem 4.3.4 by applying Theorem 423

32. Prove the validity of the second-derivative test in the case
that /"(c) < 0.

33. Find the critical numbers and the local extreme values of

the polynomial
Plx) =x* ~ 8a® 42267 —24x + 4

Then show that the equation P(x) = 0 has exactly two
real roots, both positive

34. A function / has derivative /* given by

[1x) = 2 = 1P+ - 2),

At what numbers x, if any, does f have a local maxi-
mum? A local minimum?

35. A polynomial function p(x) = a,x" + a, ¥ |+

* + a,x + a, has cntical numbersat v = — 1, 1,2, and
3. and corresponding values p(—1) =6, p(l) =1,
p(2) = 3.andp(3) = 1. Sketch a possible graph for p if:
(a) ms odd, (b) nis even

36. The quadratic function f(x) = Ax* + Bx + C has a local
minmum at v =2 and passes through the points
(~1.3)and (3. - 1). Find A, B, and C.

37. Determine a and b such that the function

f(x) = ax/(x? + b) has a local minimum at x = —2 and
fo=1
38, Let f(x) = x#(1 — %)% where p=2 and ¢ =2 arc in-
tegers.
(a) Show that the critical numbers of f are x = 0,
pltp +g).and 1
(b) Show that if p is even, then £ has a local minimum
a0,
(¢) Show that if ¢ is even, then / has a local minimum
arl
(d) Show that / has a local maximum at p/( p + ¢) for all
pandg
39. Let

x sin(1/x), x#0
fix) { 0. x=0

In Exercise 67, Section 3.1, we saw that /is differentiable
at 0 and that /'(0) = 0. Show that f has neither a local
maximum nor a local minimum at 0.

40. Suppose that C(x). R(x). and P{x) are the cost, revenue,

The inverse secant, v = se¢ 'x, is the inverse of v = see v, ¢ € [0, 47) U (47, 7]

graph of v = tan v (p. 465)

graph of v — sin ' (p. 462)

graph of v = sec 'x (p. 46%)
—(sin 'v)

d

d

—(tan 'x)

—(sec 'x)

dx

definition of the remaining inverse trigonometnce functions (p. 471)

7.

©°

The Hyperbolic Sine and Cosine

sinhx = 4(e* —e ). cosha =t e,
d d
—(sinh x) = cosh x —(cosh x) = sinh 1
dx dr

praphs (pp. 475 476)  basic idennties (p. 477)

*7.10 The Other Hyperbolic Functions

sinh v cosh x
tanh x =~ cothx =,
cosh x sinh «
1 . I
e e

derivatives (p. 479)  hyperbolic inverses (p. 481)
denvatives of hyperbolic inverses (p. 482)

r PROJECTS AND EXPLORATIONS USING TECHNOLOGY I

To do these exercises vou will need a graphics calculator or a computer with graphing capabil-
itv. The majority of these problems are open-ended so different approaches may be used o
solve them.  You should be aware that different approaches can result in slight variations in the
answers. Round vour mumerical answers to at least four decimal places.  The rounding
method that your calculatir or computer uses also may cause variations in answers.

ons. one of

7.1 The functions /(x) = a In x. where a is a constant, have a number of appl
which will be considered in a later exercise
(1) Find the values of a for which the graph of /is tangent to the line y
(h) For each
value of £* at cach solution of f(x) = 1”
(c) How many solutions are there 1o /| /(v)]

number @, how many solutions will there be of /() = 7 What is the

x? What is the value of /* at cach of these
solutions”
(d) Represent £ as a logarithm function in another base
7.2 Let A(r) denote the area of the rectangle of width 27 that has its lower vertices on the v-axis
and its upper vertices on the graph of

fx) = ¢!

See the figure

PROJECTS AND EXPLORATIONS USING TECHNOLOGY m 485

 corresponding to the production and
ertain item.  Suppose, also, that € and
functions, Then,since P =R ~ C.ut
[Terentiable.  Prove that if it is possible

4.3 LOCAL EXTREME VALUES m 233

10 maximize the profit by producing and selling v, items,
then ("(x) = R'(xy). That is, the marginal cost equals
the marginal revenue when the profit is maximized

&

- Let v = f(x) be differentiable and suppose that the graph
of fdoes not pass through the origin.  Then the distance 1
from the origin to a point P(x, f(x)) on the graph is given
by

D= ]

Show that it 1 local extreme value at ¢, then the line
through (0, 0) and (¢, /(c)) is perpendicular 10 the tangent
line to the graph of fat

42. Prove that a polynomial of degree n has at most # — 1
local extreme values

a3 Letfin =t - 207 - x4 2

(a) Show that / has exactly one critical number ¢ in the
nterval (1,2)

(b) Use the bisection method (see Scction 2.6) to ap-
proximate ¢ to within 5. Does / have a local maxi-
mum, a local minimum, or neither a maximum nor a
minimum at ¢”

P ad Letsin =24 200 4 42 -

(a) Show that f has cxactly one cnitical number in the
mterval (2, 3).

(b) Use the bisection method 1o approximate ¢ to within
f. Does f have a local maximum, a local minimum,
or neither a maximum nor a minimum at ¢?

s Letsn = x4 - 1?4 20 -3

(a) Show that / has exactly onc critical number ¢ in the
interval (2, 3).

(b) Use the Newton-Raphson method to approximate ¢:
calculate xy and round your answer to four decimal
pl Does / have a local maximum, a local mini-
mum, or neither a maximum nor a minimum at ¢?

[ 46, Letsin) = vecosx

(a) Show that / has exactly one critical number in the
interval (0, /2)

(b) Use the Newton-Raphson method 1o approximate ¢
calculate v, and round your answer to four decimal
places. Does / have a local maximum, a local mini-
mum, or neither a maximum nor a minimum at ¢

P47, Letfin = sinx + (x3/2) - 2x

(a) Show that / has exactly one critical number in the
interval [2.3]

(b) Use the N Raphson method to (3
caleulate x, and round your answer to four decimal
places. Does £ have a local maximum, a local mini-
mum. or neither a maximum nor a minimum at ¢

[ In Excrcises 48 51, usc a graphing utility to graph the func-

tion f on the indicated interval.  (a) Use the graph to estimate
the cntical numbers and the local extreme values; and
(b) estimate the intervals on which f increases and the inter-
vals on which f decreases. Round off your estimates to three
decimal places

Chapter Highlights End-of-chapter
lists stress important terms, ideas, and
theorems.

Projects and Explorations Using
Technology Special problem sets
encourage deeper investigation of the
material and can be used for coopera-
tive learning activities.
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SUPPLEMENTS
Student Aids

Answers to Odd-Numbered Exercises Answers to all the odd-numbered exercises are
included at the back of the text.

Student Solutions Manual, Prepared by Garret J. Etgen, University of Houston This
manual contains worked-out solutions to all the odd-numbered exercises and is avail-
able through your bookstore.

Instructor Aids

Instructor’s Manual, by Garret J. Etgen and Sylvain Laroche This manual contains
solutions to all the problems in the text.

Test Bank, by Sylvain Laroche A wide range of problems and their solutions are keyed
to the text material and exercise sets.

Computerized Test Bank Available in both IBM and Macintosh formats, the Com-
puterized Test Bank allows instructors to create, customize, and print a test containing
any combination of questions from the test bank. Instructors can also edit the ques-
tions or add their own.

Technology Manuals

Discovering Calculus with Derive, by Jerry Johnson, University of Nevada-Reno,
and Benny Evans, Oklahoma State University

« Derive instructions and tutorials

 Solved problems

» Practice problems

+ Laboratory exercises
Discovering Calculus with Mathematica, by Cecilia A. Knoll, Florida Institute of
Technology, Michael D. Shaw, Florida Institute of Technology, Jerry Johnson, and
Benny Evans

« Mathematica introduction and commands

« Solved problems

+ Exercises

« Laboratory projects
Discovering Calculus with Maple, by Kent Harris, Western lllinois University, and
Robert J. Lopez, Rose-Hulman Institute of Technology

+ Maple commands

« Example problems and step-by-step solutions

« Exercises
Discovering Calculus with Graphing Calculators, by Joan McCarter, Arizona State
University

« Introductions to various calculators currently on the market (this manual is calcu-

lator nonspecific)
 Projects



+ Additional exercises
» Critical thinking questions
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