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FOREWORD

This publication contains nineteen papers presented at the symposium entitled “Recent Ad-
vances in Structural Mechanics” at the 1991 ASME Winter Annual Meeting held in Atlanta, Georgia.
The symposium was sponsored by the Operatlons Appl|cat|ons and Components Committee of
the Pressure Vessels and Piping Division.

This publication consists of four parts:

® Structural Instability

® Fracture and Fatigue in Composites

® Pressure Vessels and Piping

® Design and Analysis
Five papers on structural instability discussed pre- and post-buckling problems with static and
dynamics loads. The second part has five papers dealing with fracture and fatigue problems oc-
curring in composite structures. Four articles in the next part discuss recent technology in pressure
vessels and piping. Finally, the last part has five papers devoted to the enhancement of design and
analysis methods in structural mechanics, especially in composite structures.

The work reported here is representative of current research activities and contributes to the
advancement of structural mechanics. The editors hope that this volume will serve as a useful
resource for structural engineers and stimulate further interest in structural mechanics research.

The editors wish to express their sincere gratitude to the authors for their contributions to the
symposium and to the reviewers for their critical comments and conscientious criticism.

Howard H. Chung
Argonne National Laboratory
Argonne, Illinois

Young W. Kwon
Naval Postgraduate School
Monterey, California
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FREQUENCY-COMPRESSIVE LOAD INTERACTIONS IN THE
PRE-AND POSTBUCKLING RANGES OF GEOMETRICALLY
IMPERFECT DOUBLY CURVED COMPOSITE SHALLOW SHELLS

Liviu Librescu
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

M. Y. Chang
Department of Mechanical Engineering
National Chung-Hsing University
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ABSTRACT

Laminated composite structures are being increasingly
used in the aeronautical and aerospace constructions.
Employment of the new composite material systems exhibiting
exotic properties such as high degrees of anisotropy and low
rigidities in transverse shear require more accurate methods of
analysis which are obtained by discarding the classical
Kirchhoff assumptions.

The purpose of the present paper is to determine the
vibrational behavior of preloaded geometrically imperfect
laminated composite curved panels. Such an item is of an
essential importance in the analysis of the flutter instability,
forced vibration and dynamic response of structures.

As a preparatory step, a refined geometrically
non—linear theory of transversely—isotropic symmetrically
laminated composite panels, extended to include the dynamic
effects is developed. =~ The theory developed within the
Lagrange description is based on a higher—order representation
of the in—plane displacement field through the thickness of the
structure and incorporates the effects of transverse shear
deformation, transverse normal stress component, the
out—of—plane initial geometric imperfection and fulfills that
static conditions on the bounding surfaces of the shell. The
governing non—linear equations are reduced, by using a single
arbitrary mode approach in conjunction with Galerkin’s
method, to a single non—linear ordinary differential equation.

The numerical results allow one to obtain a series of
conclusions concerning the influence played by the stress—free
initial imperfections; transverse shear deformation; the
character of in—plane boundary conditions and the
non—homogeneity of the structure, on vibration frequencies of
in—plane loaded composite panels in the pre— and postbuckling
ranges.

INTRODUCTION

The study of the free vibration of homogeneous and
composite flat and curved panels has been the subject of a
considerable interest over the past ten years. However, very

few analyses have been devoted to the study of the effects
played by the small, usually unavoidable geometric
imperfections on the vibration frequencies of composite
shear—deformable curved panels subjected to conservative
in—plane preloads. Initial geometric imperfections have been
found to be very significant in affecting the small-amplitude
vibration frequencies of flat and curved panels subjected to
in—plane compressive preloads. On the other hand, the new
exotic composite material systems exhibit low rigidities in
transverse shear and as a result, the theory of structures made
of such materials should be based on a refined model obtained
by discarding the Love—Kirchhoff hypothesis.

The present paper is going to analyze the effects of
initial geometric imperfections and transverse shear
deformations on the vibration frequency of uni/biaxially
compressed shear deformable laminated composite curved
panels. In addition to the influence of the above mentioned
effects, the one played by the sign of the Gaussian curvature of
the mid—surface of the curved panel will also be investigated.
However, in order to be able to study this problem, as a
preparatory step, the governing equations of shear deformable
composite curved panels should be derived. It should be
remarked that in spite of its evident importance very few
papers have incorporated the effect of transverse shear
flexibility in the study of this problem. In the majority of
cases this problem was analyzed for flat panels (Bhimaraddi,
1989a, b) or within the Love—Kirchhoff model (Hui and Leissa,
1983; Hui, 1985; Ilanko and Dickinson, 1987; Singer and Prucz,
1982; and Elishakoff et al., 1987).

GEOMETRICALLY NON-LINEAR THEORY OF
SHEAR DEFORMABLE LAMINATED COMPOSITE
CURVED PANELS

Consider the case of laminated composite
doubly—curved shallow panels of uniform thickness h,
symmetrically laminated of 2m+1 (m=1,2..) elastic
transversely—isotropic layers. It is assumed that the planes of
isotropy of the layer materials are parallel at each point to the
reference surface o of the composite panel. By adopting the
assumption proper to the shallow shell theory, by considering a
higher—order representation for the in—plane displacement field



through the shell thickness (see e.g. Librescu and Stein, 1991),
by retaining in the geometrical equations the nonlinear terms
associated with the transversal displacement component only,
we obtain within the Lagrange description a system of three
partial differential governing equations. Expressed in a
tensorial form these equations are:
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These equations (which are not going to be derived here)

represent the generalized counterpart of von Karman large
deflection plate theory (derived within the classical Kirchhoff
hypothesis) as well as of the Reissner’s plate theory generalized
for the theory of shells (see e.g. Librescu, 1975).

In these equations u3(5 u3(xa,t), F(= F(xa,t) and (=
¢(xa,t)) denote the transverse deflection, Airy potential
function and a

transverse shear potential function,

0 0
respectively; u3(§ u3(xa)) denotes the initial out—of—plane

geometric imperfection, while D, B, C, F, S, M denote the
rigidity quantities (not displayed in the paper); 5A and 6H are

tracing quantities which take the values zero or one according
to whether the influence identified by them (i.e., of the
transverse normal stress and of higher order effects) is
disregarded or taken into account, respectively while the dots

denote time derivatives. In addition ()[g and (-)| gﬂ denote
the Laplace and biharmonic operators, respectively. ()Ia
denotes the covariant derivative with respect to the in—planc

coordinates Xq of the mid—surface of the shell; b% denotes the
curvature tensor of the undeformed mid—surface of the shell
while caﬂ denotes the 2—D permutation symbol.

Having in view that within the geometrically nonlinear
theory of plates and shells, the bending state of stress is
coupled with the stretching one, both out—of—plane and
in—plane boundary conditions are involved.

In the following developments, the case of simply
supported boundary conditions on the whole contour will be
considered. While the out—of—plane boundary conditions are
exactly fulfilled, the in—plane ones are fulfilled on an average.
The details of these developments are not displayed here.
Employment of the procedure developed in Librescu and Stein,
1991 and Librescu, 1975 allows one to obtain the equation
describing the interaction between the frequency and the
compressive edge loads in the pre— and postbuckling ranges.
This equation which is very intricate will not be displayed
here.

NUMERICAL ILLUSTRATIONS AND CONCLUSIONS

The numerical illustrations concern the cases of single
and three layered composite shallow curved panels. As concern
the composite curved panel two instances labelled as Case 1
and Case 2 are considered, i.e.,

Case 1
Ecas = 10: Bty (= <3>) - 30: Eois (= Es> —5
G<2> Gé1> G<3> E<1> 13&3>
E<2> 9. E<1> — E<3> =10
E ’ == ) E 7 (= 7 =

<2> <2> <3>
Case 2
Ecos . Bas, EBoas By Begs
G’ _301G/ (:G’ ) 10’E' (=E’ =5

<2> <1l> <3> <1> <3>
E<2> @, E<1> » E<3> _
7 =2; FE (= E =10

<2> <2> <2>
For both cases the Poisson’s ratios are

0.25.

Vers = V<> = Vam+1> = Y<m+1> =

It is assumed that the mid—layer of the three—layered plate is
two times thicker than the external ones (implying that

h<l>/h (= h<3>/h) = 0.5 and h<2>/h = 0.25).

Here E, v and E’, v’ denote the Young’s modulus and
Poisson’s ratio in the planes of isotropy and in the planes
transverse to the isotropy planes, respectively, while G-’
denotes the transverse shear modulus.

In Fig. 1 the effect of the ratio E(G’ (which constitutes
a measure of the transverse shear flexibility) on the normalized
eigenfrequency of a circular cylindrical panel (perfect and



¥
imperfect) subjected to the (normalized) uniaxial edge loads L,

is displayed. The results reveal that in the prebuckling range
the Love—Kirchhoff shell model yields higher eigenfrequencies
than the ones provided by the refined theory. However in the
postbuckling range the opposite trend holds valid. In other
words, the classical theory of shells overpredicts the
eigenfrequencies in the prebuckling range and underpredicts
them in the postbuckling range. This trend whose explanation
will be given at the Con%erence holds valid for both perfect and
imperfect shells.

It should be noted that the negative portions of the
frequency curves correspond to an unstable postbuckling path.
This means that with the increase or decrease of the
compressive edge load some jumps in the eigenfrequencies are
expected to occur. Figure 2 displays the variation of the

9, M b4 o
nondimensional eigenfrequency (E—D—(ﬂ_—) w”) vs. the

Lyt
nondimensional uniaxial load L (5—2—) for circular

m
cylindrical panels of various ratios (32/R2. The figure reveals
that with the increase of the ratios £,/R, higher

eigenfrequencies are obtained both within the CLT (classical
theory) and HSDT (higher order shear deformation theory).
As concerns the eigenfrequencies as predicted by CLT and
HSDT in the pre— and postbuckling ranges, their trend
mentioned before is also repeated within this figure.

Figure 3 compares the eigenfrequencies of uniaxial
compressed circular cylindrical panels for movable and
immovable edge conditions. The result displayed here for a
perfect panel reveal that for immovable edge panels, in
contrast to their movable counterparts, the eigenfrequencies do
not exhibit unstable paths. In addition, they exhibit a
continuous increase which is associated with the increase of
compressive  (uniaxial) edge loads. However, the
eigenfrequencies associated with the movable edge panels
exhibit in the postbuckling range a stronger increase as
compared to their immovable panel counterpart. The same
figure also reveals that for single layered panels the HSDT
provides results in excellent agreement with FSDT when the

shear correction factor is selected as K2 = 5/6.

Figure 4 compares the nondimensional eigenfrequencies

EJ2 for uniaxially compressed doubly curved panels in the pre—
and postbuckling ranges and within CLT and HSDT. The
results reveal that for positive Gaussian curvature shells, in
contrast to their negative or zero Gaussian -curvature
counterparts, the classical theory overestimates the frequencies
over a larger range of compressive loads. Moreover, for
negative Gaussian curvature shells, the increase of the negative
curvature is accompanied by a diminution of the compressive
loads at which the trend played by CLT (consisting of the
overprediction of the eigenfrequencies) is reversed.

Figure 5 presents the influence of positive (downward)
and negative (upward) out—of—plane imperfections on the
eigenfrequencies of shells with negative Gaussian curvature
compressed by uniaxial edge loads. The results reveal that for
low compressive loads, the shells with negative imperfections
result in higher eigenfrequencies than their counterparts with
positive imperfections. However, for higher ranges of uniaxial
edge compressive loads, this trend is reversed.

Figure 6 displays the variation of @ vs. L, for the
three—layered composite circular cylindrical panels compressed

by uniaxial edge sads. ‘Two cases, i ¢, Case 1 and Case 2 i
the three—layered composite structurc are comsidered. The
results reveal that the increase of the transverse shear
flexibility (TSF) of the face layers (Case 1) yields a stronger
increase of the eigenfrequencies in the postbuckling range, as
compared to the case when the increase of TSF occurs in the
core layer only (Case 2). It is also revealed that the classical
theory, postulating invariably that E/G’ =0, predicts the
same results for both cases, i.e., the lowest frequencies in the
postbuckling range and the highest frequencies in the
pre—buckling one.

In addition, the results reveal that in contrast to the

single layered case, the FSDT with K2 = 2/3 provides results
in better agreement with HSDT than the FSDT with

K2 = 5/6. Other conclusions related to the vibratory behavior
of imperfect shells will be presented at the Conference.
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ABSTRACT

The dynamic buckling of geometrically imperfect
rectangular plates under longitudinal inplane compressive
pulse is studied. The transverse shear and rotary inertia
terms are included in the analysis and their effects are
investigated for various pulse frequencies and initial
imperfections. A collapse-type dynamic buckling criterion
is defined and buckling results are obtained. The dynamic
buckling values are compared to those for shear-rigid
plates. The results show that the classical plate theory
overestimates the resistance of plates to dynamic pulse
buckling.

INTRODUCTION

The buckling of rectangular plates under dynamic in-
plane compression was studied for constant rate of
loading, as in a rigid universal testing machine, by
Birkgan and Vol'mir (1961) and Ekstrom (1973). Later,
Ari-Gur et al (1981, 1985) investigated the dynamic
buckling under collision impact loading. Their studies,
both experimental and theoretical, were limited to low
velocity impact, where incipient buckling occurs within
the range of elastic behavior of the material. Recently,
the elastic pulse buckling of anisotropic composite
plates was studied by Ari-Gur (1989, 1991). The plastic
collapse of plates due to high intensity impulsive loads
has been reviewed in the monograph by Lindberg and
Florence (1987). With a few exceptions, it has been
observed that, for short duration pulses, the buckling
loads are higher than the static ones, but the ratios of
dynamic to static buckling loads are much smaller than
those obtained for columns. Also, the dynamic buckling
loads are sensitive to initial geometrical imperfections.
In general, short pulse durations and small imperfections
result in higher dynamic buckling loads.

To the best of our knowledge, the effects of
transverse shear deformations have not been included in
the existing published theoretical studies of the dynamic
pulse buckling of plates. There are indications, however,
that these complicating effects may be significant. A
recent study, by Ari-Gur and Elishakoff (1990), of the
dynamic pulse buckling of columns, demonstrated an
appreciable effect of transverse shear deformations on
the buckling resistance of the studied structures. The
objective of the present paper is, therefore, to study
the influence of transverse shear deformations and rotary
inertia on the dynamic pulse buckling of plates, in
comparison with results obtained through the classical
plate theory.

ANALYSIS

Consider a rectangular plate of a length a, width b
and thickness h, subjected to a compression pulse in the
longitudinal direction x (Figure 1). The plate has an
initial geometrical imperfection w,(x,y). Due to the
pulse, transient deformations occur and time-dependent
in-plane displacements u(x,y,t) and v(x,y,t), lateral
deflections w(x,y,t) and shear angles Yy, (x,y,t) and
Y,(x,y,t) are generated.

Differential Equations
A first-order shear deformation theory (FST), as

proposed by Mindlin (1951), is adopted here. Assuming
that a line perpendicular to the neutral surface of the
undeformed plate remains straight (but not necessarily
normal) throughout the response, and assuming small
rotations of the cross-section and neutral surface, the
differential equations of dynamic equilibrium of the
Mindlin-type plate are:

I,4 = Ny *Ny, ,— [0, (W =¥, )] (1)
IV = Ny o ¥ N o~ 105 (W =YY 1 5 (2)
Iw = [0+ N, (W ~Y,) +Now ]+ (3)

[Qy+Ny (w,,=vy) +nyw,x] .y

Iz (a’,x_vx) = Qx+Mx,x+MXy-}'_NXyX (4)
I (W, =¥,) = Oy+M, ,+My ~N,Y, (5)

where f, =0f/dx , f=0f/dt and, as shown in Figure 2, N,
and N, are the inplane normal forces, N, is the inplane
shear force, M, and M, are the bending moments, is the
warping moment and Q, and Q are the transverse shear
forces, all of them per unit length of the plate cross-
section. The angles y, and y, are the transverse shear
strains or the rotations of the cross-section due to
shear only, whereas y;—(w-w,),; (i=x,y) 1is the total
rotation of the cross-section. Note that w is the total
distance from the x-y plane, hence the actual lateral
deflection is w-w,. I, and I, are the translational and



rotational inertia terms, respectively. For uniform
density plates, they are:

I, =ph (6)
I, = 1—129h3 (7)

Note that the present theory includes the inplane
forces and inertia terms that were not included by
Mindlin (1951), whose paper dealt with lateral vibrations
only. When the inplane forces (N;) and inertia terms (I,u
, I,V) are neglected, Equations (1) and (2) vanish and
Equations (3)-(5) are reduced to the corresponding
Mindlin theory equations.

Also, for y,=y,=0, substitution of the shear forces
Q. and Q from Equations (4)-(5) into Equation (3),
reduces the equations to the classical plate theory
(CPT), as in the paper by Ari-Gur et al (1981).

The forces and moments relate to the deformations
through the following equations:

N, = 1E—€2 (e +vey) (8)
N, = iﬁz (e, +ve,) (9)
N,, = Ghy,, (10)

M, = D (K, +VK,) (11)

M, = D(x,+VK,) (12)

M, = (1-v)Dx,, (13)

(O : Q] = kGhly, : v,] (14)

where E is the modulus of elasticity, v the Poisson's
ratio, G the shear modulus, k the shear shape factor, h
the plate thickness and D the bending stiffness:

p- _ ER (15)
12 (1-v?)

The strain-displacement relations are:

(uy, 5+uy

1 .
)+ S (W W oW, W, ;) i 1, =Xy

(16)

where ¢ =€, €,=€, u=u, u=v and y,=2¢€,. The curvatures
are:

1 v & 17
Ki5 = (W_Wo),ij'E(Yi,j*Yj.i) i 1,_7=x,y( )

The differential equations (1)=-(5) should be
integrated to solve for the response functions u, v, w,
Y, and y,. Differentiating Equation (3) in respect to x
and then substituting w,, in Equation (4), and similarly
for w,, in Equation (5), provide five decoupled
differential equations for 4, ¥, %, ¥, and §¥,. The

decoupled equations will be presented later in a
nondimensional formulation.

Boundary and Initial Conditions
In order to solve the system of differential

equations, four boundary conditions are required along
each edge -- two lateral and two inplane conditions. The
present study assumes that the edges are simply-
supported:

w=0 ; M =0 at x=0, a
! 18
w=0 ; M, =0 at y=0, b (18)
and frictionless:
N_, =0 at x=0,a y=0,b (19)

Xy

It is also assumed that the edges remain straight
throughout the deformation and their normal displacements
are restrained:

(20)

The uniform longitudinal displacement of the loaded
edge is dictated by the load:
N, = -AQ(C)

X

at x=0 (21)

The plate is assumed to be at rest before the load
is applied. Hence, the initial conditions at t=0 read:

w=w_ , w=0 (22)

The shape of the initial geometrical imperfection
W,(X,y) 1is not restricted. However, the results for the
present study were obtained for

L MX . T
wy(x) = W051n? sany (23)

which kinematically agrees with the assumed simply-
supported boundary conditions.

Nondimensional Formulation

For better understanding and illustration of the
significant variables of the problem, a nondimensional
formulation was developed and will be employed in the
presentation of the results and the discussion. We define
the nondimensional response functions:

— u s —
u=s— , V==, W=

a b (4]

>l

coordinates:

= p=d = L2 __ [28)
E 2 n b 4 T a (1‘V2)p

and parameters:

1-v2
26
Eh()

— a b
=2 32
2 h

5 €, (1) =N, (¢t)

Note that the nondimensional time 7=1 corresponds to the
time for the propagation of a longitudinal wave along the
length (a) of the plate. Also, for isotropic materials,
D=1 and G=E/2(1+v). The differential equations then
become:



Uoe = €gp ¥ VE, ¢ 7
1-v (27)
*T{‘EY:“,-\ [ (;‘d W Yt)] z}
?" =(a_)2(8n.n * "‘:E.n)+
— 1= (28)
e
[n P n)'"
W oee =[(e¢* wg ).ay(]z
(E [ nﬂ’ei n Ay I (29)
[k)‘ Ye, E+aYn n)+(YEnW,n),f(YEnW,E),n}
— — 1 -
Ye, oo = —El—lwE“—12(al)2(k—2!—85—vsq)ye+ =03
[xcﬂnc +3(1_")"eq.n]
1-— — 1-
Yo.e0 T 3 Wone 12(‘31)2(1(7\,_6"—\’5()%1 (31)
ahi

[a(x +v1c£) + (1—v)x£n'5]

where the nondimensional curvatures are the flexural
strains obtained by multiplying the dimensional
curvatures of Equation (17) by the thickness h, for
example : x =x,h.

Numerical Approach

The finite-difference-method (FDM) was employed to
solve the problem, with the differential equations
approximated over the finite time interval At and plate
element A by An. In order to allow for finite A{ and An,
which are not necessarily negligible relative to the
thickness, coefficients a, and a,, defined as:

a, = 1+(Ax) = 1+@afar)?
hy (32)
- & - 2
ay—1+(h) = 1+(anAi)
were incorporated into Equations (4)-(5), which then

read:

IZ (axw,x_vx) = QX+MX.X+MX.V Y_NXyX (33)

L (e, w  =¥,) = O, +M, ,+M, ,~Ny, (34)
a, and a, do not appear in the differential equations (4)-
(5) since a,=1 for Ax<<h and a,=1 for Ay<<h. However, the
additional terms, which represent the rotational inertia
due to the finite lengths of the plate element, are
needed for use in the numerical solution, where Ax and Ay
have discrete values that may be significant. For
example, if Ax=a/20 is chosen for a plate with a/h=40,
then a,=5 is obtained, and using a,=1 will cause a large
numerical error.

The incorporation of a and a, do not affect
Equations (27)-(29), but Equations (30)-(31) become:

ax'— == =V
Ye, oo = —a_—lwlzﬂ—IZ(alf(k ~sE—vcn)yE+ (35)

-El[(l(z*'VKﬂ)‘E +a(1-v) KE“'“]

Yoo = ). —12(51)2(1<i1—e —vsg)y“ (36)
A[ (K +VKE) +(1-v) kg, E]

Using the central difference approximation for the
time derivatives in Equations (27)-(29) and (35)-(36),
explicit equations for u, v, w, y, and y, at the time T+AT
are obtained. The differential equations are then
integrated through time-stepping.

The central difference approximation was employed
also for the spatial derivatives, except for the
boundaries, where forward schemes were used at £=0 and
n=0, and backward schemes at §=1 and n=1. All the results
presented at this paper were obtained for A{=An<0.1 and
AT<AE.

RESULTS AND DISCUSSION

The time-dependent load €,(7) in the analysis is not
restricted to a certain time-history. Since a half-sine
pulse shape can be varied in intensity (€,) and duration
(T), it was chosen for the present analysis. The applied
pulse is then:

T
—T) , 0<t<T (37)

0 , 12T

e (1) = aosin(

Buckling Criterion
A buckling criterion that relates the peak axial

displacement (G) to the peak force (g,) at the loaded
edge (£=0) of the plate is employed in the present study.
Buckling is defined when a small increase in the pulse
intensity causes a sharp increase of the end displacement
(Figure 3). The meaning of this is that at a certain
level of load intensity the longitudinal resistance of
the plate is substantially diminished and a slightly
stronger pulse causes a structural collapse. This
criterion resembles the Budiansky-Hutchinson (1964)
dynamic buckling criterion (see also Hutchinson and
Budiansky (1966)), for which buckling occurs when a small
increase in the load intensity causes a transition from
a bounded response to an unbounded one.

Shear Effects

The effects of the transverse shear deformations are
studied here by comparing results obtained through the
present first-order shear theory (FST) with those for the
classical plate theory (CPT). The shear shape factor for
isotropic plates is k=5/6=0.83, whereas the rigid
transverse shear assumption of the classical theory is
equivalent to k-w.

Results for a=1, A=50, v=0.3 and W,=0.01 are
presented in Figures 4 (a) and (b). The nondimensional
half-period of the fundamental natural frequency of this
plate is T,/2=27.6. For a relatively short pulse duration
of T=10, the classical plate theory overestimates the FST
buckling load by more than a factor of two, as shown in
Figure 4(a). Moreover, for a longer pulse duration of
T=50, see Figure 4(b), the CPT buckling load is almost
four times larger than the shear theory prediction. These
ratios, however, are lower than those obtained by Ari-Gur
and Elishakoff (1990) for columns of similar length-to-
thickness ratio.

Note also that the FST buckling load for T=50 is
lower than the linear static buckling load. This means
that neglecting shear effects and, as acceptable in
common practice, assuming that the dynamic buckling load
is higher than the static one, may lead to dangerous
predictions.

Effects of Pulse Duration

The dynamic buckling loads under short duration
pulses are significantly higher than those for quasi-
static loads. This general prediction is independent of
the theory employed. However, there are differences
between both theories in the relative proportions. Figure




5(a) presents the FST results for impulsive (T=10),
dynamic (T=25) and quasi-static (T=50) loads. The
impulsive buckling load is more than four times larger
than the dynamic and nine times larger than the quasi-
static buckling loads. A comparison with Figure 5(b) for
classical theory shows smaller ratios of two and five,
respectively. Since the difference between the present
FST and CPT formulations is not only in the inclusion of
transverse shear deformations but also rotary inertia
terms, it is possible that the relatively large
stiffening for T=10 in Figure 5(a) is due to the added
contribution of rotary inertia resistance.

Imperfection Effects
Dynamic pulse buckling loads are sensitive to

initial geometrical imperfections. A comparison between
W,=0.01 and W,=0.1 is presented in Figure 6. It appears
that the relative difference in buckling loads between
the two imperfection values is smaller for the FST
results than those for the CPT results. Hence, when the
shear deformation theory is employed, the imperfection
sensitivity is smaller and the significance of exact
imperfection characterization appears to decrease.

Effects of Thickness

The effects of transverse shear and rotary inertia
are more pronounced for thick plates. The results in
Figures 4-6 are for b/h=50 for which, as was shown in
Figure 4(a), the impulsive buckling load predicted by the
first-order shear theory (FST) is less than half of that
predicted by the classical plate theory (CPT). The
difference is much smaller for thinner plates. Results
for b/h=100 are presented in Figure 7, and for this
thinner plate the FST buckling load is only about 25%
less than the CPT prediction.

CONCLUDING REMARKS

The effects of transverse shear deformation on the
dynamic pulse buckling of isotropic plates were studied.
It was shown, for simply-supported plates, that the
dynamic buckling loads obtained through a Mindlin-type
first-order transverse shear deformation theory are lower
than those predicted through the classical plate theory.
Dynamic buckling results obtained through the classical
theory, which neglects the transverse shear effects, may
be significantly overestimated (factors of up to four
were obtained here) relative to those obtained from a
theory that includes shear effects.

Nx(t)

Fig. 1 THE PLATE
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