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Abstract

This monograph presents some new concentration inequalities for
Feynman-Kac particle processes. We analyze different types of stochas-
tic particle models, including particle profile occupation measures,
genealogical tree based evolution models, particle free energies, as well
as backward Markov chain particle models. We illustrate these results
with a series of topics related to computational physics and biology,
stochastic optimization, signal processing and Bayesian statistics, and
many other probabilistic machine learning algorithms. Special empha-
sis is given to the stochastic modeling, and to the quantitative perfor-
mance analysis of a series of advanced Monte Carlo methods, including
particle filters, genetic type island models, Markov bridge models, and
interacting particle Markov chain Monte Carlo methodologies.
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1

Stochastic Particle Methods

1.1 Introduction

Stochastic particle methods have come to play a significant role in
applied probability, numerical physics, Bayesian statistics, probabilistic
machine learning, and engineering sciences.

They are increasingly used to solve a variety of problems, includ-
ing nonlinear filtering equations, data assimilation problems, rare event,
sampling, hidden Markov chain parameter estimation, stochastic con-
trol problems and financial mathematics. To name a few, They are
also used in computational physics for free energy computations, and
Schrodinger operator’s ground states estimation problems, as well as
in computational chemistry for sampling the conformation of polymers
in a given solvent.

To illustrate these methods, we start with a classical filtering exam-
ple. We consider a Markov chain X, taking values in R¢, with prior
transitions given by

P(Xy € doy | Xg—1 = zk—1) = pr(xk|zi—1) do, (1.1)



2 Stochastic Particle Methods

Using some slight abuse of Bayesian notation, the observations Y}, are
R? _valued random variables defined in terms of the likelihood functions

P(Yx € dyk | Xi = xk) = pr(yk|zr) dyx, (1.2)

In the above display, dry and dy; stand for the Lebesgue measures
in R? and R?. To compute the conditional distribution of the signal
path sequence (Xo,...,X,), given the observations (Yp,...,Y;), we can
use the genealogical tree model associated with a genetic type inter-
acting particle model. This genetic algorithm is defined with mutation
transitions according to 1.1, and proportional selections with regard to
(w.r.t.) the fitness functions 1.2. The occupation measures of the cor-
responding genealogical tree provides an approximation of the desired
conditional distributions of the signal. More generally, for any function
f on the path space we have

lim - 5 Finen(i) = B (Xoreo XY = goreens Yo —g) (13
NIT!IoloN 1 menp(t)) = [IIEEEETL Y 0=Y0y---s¥n = Yn .
where line, (i) stands for the i—th ancestral line of the genealogical
tree, at time n.

More refined particle filters can be designed, including fixed param-
eter estimates in hidden Markov chain models, unbiased particle esti-
mates of the density of the observation sequence, and backward smooth-
ing models based on complete ancestral trees. Section 2 presents a more
rigorous and detailed discussion on these topics.

Rigorous understanding of these new particle Monte Carlo method-
ologies leads to fascinating mathematics related to Feynman-Kac path
integral theory and their interacting particle interpretations [17, 20, 38].
In the last two decades, this line of research has been developed by
using methods from stochastic analysis of interacting particle systems
and nonlinear semigroup models in distribution spaces, but it has also
generated difficult questions that cannot be addressed without devel-
oping new mathematical tools.

Let us survey some of the important challenges that arise.

For numerical applications, it is essential to obtain nonasymptotic
quantitative information on the convergence of the algorithms. For
instance, in the filtering problem presented at beginning of this section,
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it is important to quantify the performance of the empirical particle
estimate in 1.3. Asymptotic theory, including central limit theorems,
moderate deviations, and large deviations principles have clearly lim-
ited practical values. An overview of these asymptotic results in the
context of mean field and Feynman-Kac particle models can be found
in the series of articles [13, 28, 29, 33, 41, 43].

Furthermore, when solving a given concrete problem, it is impor-
tant to obtain explicit nonasymptotic error bounds estimates to ensure
that the stochastic algorithm is provably correct. While non asymptotic
propagation of chaos results provides some insights on the bias prop-
erties of these models, it rarely provides useful effective convergence
rates.

Last but not least, it is essential to analyze the robustness prop-
erties, and more particularly the uniform performance of particle
algorithms w.r.t. the time horizon. By construction, these important
questions are intimately related to the stability properties of com-
plex nonlinear Markov chain semigroups associated with the limit-
ing measure valued process. In the filtering example illustrated in this
section, the limiting measure valued process is given by the so-called
nonlinear filtering equation. In this context, the stability property of
these equations ensures that the optimal filter will correct any erroneous
initial conditions. This line of thought has been further developed in
the articles [13, 31, 38, 40], and in the books [17, 20].

Without any doubt, one of the most powerful mathematical tools
to analyze the deviations of Monte Carlo based approximations is the
theory of empirical processes and measure concentration theory. In the
last two decades, these new tools have become one of the most impor-
tant steps forward in infinite dimensional stochastic analysis, advanced
machine learning techniques, as well as in the development of a statis-
tical non asymptotic theory.

In recent years, much effort has been devoted to describing the
behavior of the supremum norm of empirical functionals around the
mean value of the norm. For an overview of these subjects, we refer
the reader to the seminal books of Pollard [81], Van der Vaart and
Wellner [93], Ledoux and Talagrand [72], the remarkable articles by
Giné [56], Ledoux [70, 71|, and Talagrand [90, 91, 92], and the more
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recent article by Adamczak [1]. The best constants in Talagrand’s con-
centration inequalities were obtained by Klein and Rio [67]. In this
article, the authors proved the functional version of Bennett’s and
Bernstein’s inequalities for sums of independent random variables.

Two main difficulties we encountered in applying these concentra-
tion inequalities to interacting particle models are of different order:

First, all of the concentration inequalities developed in the literature
on empirical processes still involve the mean value of the supremum
norm empirical functionals. In practical situations, these tail style
inequalities can only be used if we have some precise information on the
magnitude of the mean value of the supremum norm of the functionals.

On the other hand, the range of application of the theory of
empirical processes and measure concentration theory is restricted
to independent random samples, or equivalently product measures,
and more recently to mixing Markov chain models. In the reverse
angle, stochastic particle techniques are not based on fully independent
sequences, nor on Markov chain Monte Carlo principles, but on inter-
acting particle samples combined with complex nonlinear Markov chain
semigroups. More precisely, in addition to the fact that particle models
are built sequentially using conditionally independent random samples,
their respective conditional distributions are still random. Also, in a
nonlinear way, they strongly depend on the occupation measure of the
current population.

In summary, the concentration analysis of interacting particle pro-
cesses requires the development of new stochastic perturbation style
techniques to control the interaction propagation and the degree of
independence between the samples.

Del Moral and Ledoux [36] extend empirical processes theory to
particle models. In this work, the authors proved Glivenko-Cantelli and
Donsker theorems under entropy conditions, as well as nonasymptotic
exponential bounds for Vapnik-Cervonenkis classes of sets or functions.
Nevertheless, in practical situations these non asymptotic results tend
to be a little disappointing, with very poor constants that degenerate
w.r.t. the time horizon.

The second most important result on the concentration properties
of the mean field particle model is found in [40]. This article is only



1.1 Introduction 5

concerned with the finite marginal model. The authors generalize the
classical Hoeffding, Bernstein and Bennett inequalities for independent
random sequences to interacting particle systems.

In this monograph, we survey some of these results, and we pro-
vide new concentration inequalities for interacting empirical processes.
We emphasize that this review does not give a comprehensive treat-
ment of the theory of interacting empirical processes. To name a few
missing topics, we do not discuss large deviation principles w.r.t. the
strong T-topology, Donsker type fluctuation theorems, moderate devi-
ation principles, and continuous time models. The first two topics are
developed [17], the third one is developed in [32], the last one is still
an open research subject.

Here, we emphasize a single stochastic perturbation method, with
second-order expansion entering the stability properties of the limiting
Feynman-Kac semigroups. The concentration results attained are prob-
ably not the best possible of their kind. We have chosen to strive for just
enough generality to derive useful and uniform concentration inequal-
ities w.r.t. the time horizon, without having to impose complex and
often unnatural regularity conditions to squeeze them into the general
theory of empirical processes.

Some of the results are borrowed from [40], and many others are
new. This monograph should be complemented with the books and
articles [17, 20, 31, 44]. A very basic knowledge in statistics and machine
learning theory will be useful, but not necessary. Good backgrounds in
Markov chain theory and in stochastic semigroup analysis are necessary.

We have done our best to give a self-contained presentation, with
detailed proofs. However, we assume some familiarity with Feynman-
Kac models, and basic facts on the theory of Markov chains on abstract
state spaces. Only in subsection 4.6.1, have we skipped the proof of
some tools from convex analysis. We hope that the essential ideas are
still accessible to the readers.

It is clearly not the scope of this monograph to give an exhaus-
tive list of references to articles in computational physics, engineering
sciences, and machine learning, presenting heuristic-like particle algo-
rithms to solve a specific estimation problem. With a few exceptions, we
have only provided references to articles with rigorous and well founded
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mathematical treatments on particle models. We apologize in advance
for possible errors, or for references that have been omitted due to the
lack of accurate information.

This monograph grew from series of lectures the first author gave
in the Computer Science and Communications Research Unit, of the
University of Luxembourg in February and March 2011. They were
reworked, with the addition of new material on the concentration of
empirical processes for a course given at the Sino-French Summer
Institute in Stochastic Modeling and Applications (CNRS-NSFC Joint
Institute of Mathematics), held at the Academy of Mathematics and
System Science, Beijing, in June 2011. The Summer Institute was
ably organized by Fuzhou Gong, Ying Jiao, Gilles Pages, and Mingyu
Xu, and the members of the scientific committee, including Nicole El
Karoui, Zhiming Ma, Shige Peng, Liming Wu, Jia-An Yan, and Nizar
Touzi. The first author is grateful to them for giving to him the oppor-
tunity to experiment on a receptive audience with material not entirely
polished.

In reworking the lectures, we have tried to resist the urge to push
the analysis to general classes of mean field particle models, in the spirit
of the recent joint article with E. Rio [40]. Our principal objective has
been to develop just enough analysis to handle four types of Feynman-
Kac interacting particle processes, namely, genetic dynamic population
models, genealogical tree based algorithms, particle free energies, as
well as backward Markov chain particle models. These application
models do not exhaust the possible uses of the theory developed in
these lectures.

1.2 A Brief Review on Particle Algorithms

Stochastic particle methods belong to the class of Monte Carlo
methods. They can be thought of as a universal particle methodology
for sampling complex distributions in highly dimensional state spaces.

We can distinguish two different classes of models, namely, diffu-
sion type interacting processes, and interacting jump particle models.
Feynman-Kac particle methods belongs to the second class of models,
with rejection-recycling jump type interaction mechanisms. In contrast
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to conventional acceptance-rejection type techniques, Feynman-Kac
particle methods are equipped with an adaptive and interacting recy-
cling strategy.

The common central feature of all the Monte Carlo particle method-
ologies developed so far is to solve discrete generation, or continu-
ous time integro-differential equations in distribution spaces. The first
heuristic-like description of these probabilistic techniques in mathemat-
ical physics goes back to the Los Alamos report [49], and the article by
Everett and Ulam in 1948 [48], and the short article by Metropolis and
Ulam [79], published in 1949.

In some instances, the low of measures is dictated by the problem at
hand. In advanced signal processing, the conditional distributions of the
signal, given partial and noisy observations, are given by the so-called
nonlinear filtering equation in distribution space (see for instance [15,
16, 17, 20, 38], and references therein).

Free energies and Schrodinger operator’s ground states are given by
the quasi-invariant distribution of a Feynman-Kac conditional distri-
bution flow of non absorbed particles in absorbing media. We refer the
reader to the articles by Cances, Jourdain and Lelievre [5], El Makrini,
Jourdain and Lelievre [46], Rousset [85], the pair of articles of Del
Moral with Miclo 38, 39], with Doucet [19], and the book [17], and the
references therein.

In mathematical biology, branching processes and infinite popula-
tion models are also expressed by nonlinear parabolic type integro-
differential equations. Further details on this subject can be found in
the articles by Dawson and his co-authors [11, 12, 14], the works of
Dynkin [45], and Le Gall [69], and more particularly the seminal book
of Ethier and Kurtz [47], and the pioneering article by Feller [50].

In other instances, we formulate a given estimation problem
in terms of a sequence of distributions with increasing complexity
on state space models with increasing dimension. These stochastic
evolutions can be related to decreasing temperature schedules in
Boltzmann-Gibbs measures, multilevel decompositions for rare event
excursion models on critical level sets, decreasing subsets strategies
for sampling tail style distributions, and many other sequential
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importance sampling plans. For a more thorough discussion on these
models we refer the reader to [21].

From a purely probabilistic point of view, any flow of probability
measures can be interpreted as the evolution of the laws of the random
states of a Markov process. In contrast to conventional Markov chain
models, the Markov transitions of these chains may depend on the dis-
tribution of the current random state. The mathematical foundations
of these discrete generation models began in 1996 in [15] within the
context of nonlinear filtering problems. Further analysis was developed
in [38]. For a more thorough discussion on the origin and the perfor-
mance analysis of these discrete generation models, we also refer the
reader to the book [17], and the joint articles Del Moral with Guionnet
[28, 29, 30, 31], and with Kouritzin [35].

The continuous time version of these nonlinear type Markov chain
models take their origins from the 1960s, with the development of fluid
mechanisms and statistical physics. We refer the reader to the pio-
neering works of McKean [61, 63], as well as the more recent treat-
ments by Bellomo and Pulvirenti [3, 4], the series of articles by Graham
and Méléard on interacting jump models [58, 59, 82|, the articles by
Méléard on Boltzmann equations [75, 76, 77, 78], and the lecture notes
of Sznitman [89], and references therein.

In contrast to conventional Markov chain Monte Carlo techniques,
these McKean type nonlinear Markov chain models can be thought of
as perfect importance sampling strategies, in the sense that the desired
target measures coincide at any time step with the law of the random
states of a Markov chain. Unfortunately, as we mentioned above, the
transitions of these chains depend on the distributions of their random
states. Thus, they cannot be sampled without an additional level of
approximation. One natural solution is to use a mean field particle
interpretation model. These stochastic techniques belong to the class of
stochastic population models, with free evolutions mechanisms, coupled
with branching and/or adaptive interacting jumps. At any time step,
the occupation measure of the population of individuals approximates
the solution of the nonlinear equation, when the size of the system
tends to co.



