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Preface

This book is intended for a variety of audiences, including mathematicians,
social scientists, biologists, environmental scientists, etc. I will argue in the
Introduction that there are two directions of interaction between mathe-
matics and any applied field. First, mathematics can be applied to that field;
second, that field can stimulate the development of new mathematics. These
interactions have been exhibited between mathematics and physical prob-
lems for a long time. As the interactions between mathematics and such
newer areas of application as social, biological, and environmental problems
become more serious, there is need to educate both mathematicians and
non-mathematicians in the mathematics which is playing a role in this
interaction. The by-now-common “Finite Math” books do this on an elemen-
tary level for a certain type of finite or “discrete”” mathematics.! This book
is a more advanced treatment of the discrete mathematical tools which are
being used in these newer areas of application. It illustrates both the appli-
cations of mathematics to these various applied subjects and the impact of
these applied subjects on the development of new mathematics.

Although this book can be nsed for reference, it is primarily a textbook.
It can be used for a variety of courses. I have used a preliminary version of
the book several times in a sophomore through senior level course at

1For further discussion of the nature of “discrete” mathematics, the reader is referred to
the Introduction.
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Rutgers University on Mathematical Models in the Social and Biological
Sciences and in a junior-senior course in Graphs, Games, and their Applica-
tions. The enrollment in these courses was about 509, math majors and
the rest from a variety of areas in social and biological science; it included
several graduate students from disciplines outside mathematics. I have also
used the book in mathematics graduate courses in Mathematical Models,
in Applied Graph Theory, and in Measurement and Decisionmaking—these
courses made much greater use of the proofs and theoretical material pre-
sented. The material from the book has also been used in note form in similar
courses at a number of other institutions. Finally, I was fortunate enough
to use the material in two Summer Institutes for college and junior college
teachers of mathematics and related fields such as Operations Research,
Engineering, Envrionmental Science, etc.

The I-semester Math Models course uses material on modelling
(Chapter 1), graph theory (a brief treatment? of Chapter 2), signed graphs
and balance (Sec. 3.1), weighted digraphs and pulse processes (a brief treat-
ment of Chapter 4), and Markov chains (a brief treatment of Chapter 5).
It closes with either n-person games (a brief treatment of Chapter 6), group
decisionmaking (a brief treatment of Chapter 7), or measurement and
utility (a brief treatment of Chapter 8). In general, in the undergraduate
version of this course, proofs are de-emphasized, and building and evalua-
tion of models is emphasized. At present, the undergraduate version of this
course is taught at Rutgers as a follow-up to a course in “Finite Mathema-
tics,” which covers the language of sets, elementary topics in linear algebra,
counting techniques, elementary probability, etc. (The Finite Math course
has some calculus as a prerequisite)

A l-year course in Mathematical Models in the Social and Biological
Sciences could cover parts of each chapter in the book. It should start with
all of Chapters 1 and 2, then cover most of Chapter 3 (perhaps up through
Sec. 3.5.1), and conclude with a brief treatment of the remaining chapters.
Similar I-semester or l-year courses could emphasize environmental prob-
lems. The l-semester graphs and games course covered most of Chapters
1,2,3, and 6. A l-semester applied graph theory course covers much of
Chapters 1, 2, 3, and 4. Finally, a measurement and decisionmaking course
covers Chapters 1, 7, and 8, with careful treatment of exercises and sup-
plementary readings from the references.

I have tried to keep the interdependencies in this book to a minimum,
so that the book can be used in a variety of ways. The following sections
and subsections in Chapter 2 are essential for Chapters 2 to 5: 2.1, 2.2.1,
2.2.4,2.2.6,2.3.1,2.3.2 (not the proofs), and 2.4.1. Much of Chapter 6 can be

2See the table of dependencies which follows the preface for a detailed description of the
“brief treatments” referred to.
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read after reading Sec. 2.1 and parts of Sec. 2.2.1, and Chapters 7 and 8 have
no prerequisites. Chapters 3-8 are essentially independent, though occasional
reference to earlier chapters is made. If much of Chapter 3 is covered, I
recommend covering all of Chapter 2 first, or beginning with the brief treat-
ment of Chapter 2 and then returning to additional topics as they are needed.
The dependencies within chapters are diagrammed at the end of the preface.
Material which could be covered in a brief treatment is also described. Fur-
ther guidance for what can be omitted is contained in the text.

There are a number of mathematical prerequisites for this book. The
language of sets is used throughout. So are elementary logical symbols and
arguments. The reader should be familiar with such terms as necessary
condition, sufficient condition, converse, contrapositive, and so on. Also
basic to much of the book is elementary linear algebra. However, beyond
assuming certain ability to manipulate matrices and vectors (and in one
place determinants), I have tried to make the book self-contained as far as
linear algebra is concerned. The development also uses some probability
theory, but essentially only in Chapter 5 (Markov Chains) and briefly in
Sec. 8.5.2 (The Expected Utility Hypothesis). The reader who has not been
exposed to the elementary theory of probability, say at the level of a book
in Finite Math, will have trouble with that material. He should understand
how to calculate probabilities, how to use tree diagrams, and what it means
to find conditional probabilities and expected values. Counting techniques,
again at the level of a Finite Math course, are also used in places. Used
throughout are simple terms about functions, for example, domain, range,
one-to-one, onto, etc. Some ideas from the calculus are also used in places,
in particular, the idea of limit. The student without at least one semester
of calculus will have trouble reading these parts.

These are the formal mathematical prerequisites for much of the book.
It is my experience that the book can be used, if almost all proofs are omitted,
by students with no more background than a good finite math course and
a good one-semester calculus course. However, a year of calculus is strongly
recommended and the student who has the added mathematical sophistica-
tion of a full course in probability or linear algebra will get much more out
of this material.

Some of the subsections or proofs use more advanced mathematical
tools, for example group theory and analytic or topological arguments. Other
subsections simply require a fair amount of mathematical maturity. These
subsections or proofs are starred or moved to the end of a section, and can
be omitted without loss of continuity. Indeed, almost all proofs in this book
can be omitted without loss of continuity.

The question of non-mathematical prerequisites for this book is not
nearly so easy to define as the question of mathematical prerequisites. The
reader of the book is not expected to be an expert in the social, biological,
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or environmental sciences. Indeed, the material has been used in courses
populated by a great many mathematics students with little background in
the applied areas discussed. Most of the basic terminology of the applied
fields, when used, is explained. Indeed, it is often the purpose of the develop-
ment to make precise definitions of terms from another discipline which are
not defined too carefully in practice. (Examples are balance in a social
structure, status in an ecological chain, etc.) Of course, any student who
seriously wishes to pursue the interactions between mathematics and an
applied subject had better gain some understanding of that subject as well.

This book has many exercises, usually some at the end of each section.
I have long felt that the best way to learn mathematics is to do it, and so
I feel that the exercises are a very important part of this book. Many of them
contain additional material, not presented in the text. I have tried to arrange
them in order from exercises simply asking the reader to repeat computations
made in a section to more difficult theoretical ones. The hardest ones should
be tractable only for the most advanced students. Some of these harder ones
are marked with an asterisk *. Finally, I have added a few discussion prob-
lems and a few projects at the end of some of the sections. Some of the
projects suggest a mathematical or mathematical modelling research problem
which goes in a new or untried direction.

My interest in the applications of mathematics to social, biological,
and environmental problems, goes back to my days as an undergraduate.
This interest was nurtured along the way by many people, and in a sense
they planted the seed from which this book developed. I would especially
like to thank John Kemeny, Duncan Luce, Robert Norman, Dana Scott,
and Patrick Suppes.

I would also like to thank the following institutions for their financial
and other support of my research prior to and during the development of
this book: the Institute for Advanced Study, Rutgers University, the Sloan
Foundation, the RANN Program of the National Science Foundation, and
the Rand Corporation, which gave me permission to use various materials I
originally developed as a Rand researcher.

Prentice-Hall supplied chapter-by-chapter technical reviews which, I
feel, significantly improved the quality of the book. Arthur Wester, the
former Mathematics Editor at Prentice-Hall, took an early interest in the
work, and his conviction that I had something different and important to
say were a source of encouragement.

Many individuals supplied comments and criticisms and I cannot
possibly acknowledge them all. But I would like to single out Duncan Luce
and Victor Klee, who sent detailed comments on an early draft, and Kenneth
Bogart, who supplied a detailed review of the next-to-last draft. William
Lucas and Lloyd Shapley gave me very helpful comments about Chapter 6
(n-person Games). (Bill Lucas also provided me with several forums for
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presentation of this material to potential users.) Jeffrey Ullman, Kenneth
Bogart, David Rosen, Frank Norman, Peyton Young, and Duncan Luce
provided detailed comments on other individual chapters.

Judy Johnson and Rochelle Leibowitz found many errors in each draft,
made countless useful suggestions, and carefully worked all of the exercises
in the final draft. Their conscientious and enthusiastic help is hard to measure.

I alone, however, am responsible for all errors which may remain.

Finally, I would like to thank my wife Helen. As a college teacher of
mathematics and statistics, and a student of mathematics and its relation to
social, biological, and environmental problems, she was able to help me
with many technical questions. As a wife, her patience, encouragement,
understanding, and love helped me to finish this project, I hope successfully.

New Brunswick, N.J. FRED S. ROBERTS
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Ac
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A— B
AS B
AS B
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|A|

the complement of 4

the union of 4 and B

the intersection of 4 and B

the difference between 4 and B, namely 4 N B¢
A is a subset of B

A is a proper subset of B

A is not a subset of B

X is a member of B
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not

implies

if and only if (equivalence)
if and only if

for all

there exists

Miscellaneous

®
(B.+
(Rn
[a, B]
(a, b)

(%)

f

the set of real numbers

the positive real numbers
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the closed interval consisting of all real numbers ¢ witha =< ¢ =< b.
the open interval consisting of all real numbers ¢ with a < ¢ < b.

the binomial coefficient n!/k!(n — k)!

congruent to
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INTRODUCTION

The Scope
of the Book

The interaction between mathematics and any field of application goes
two ways. One way, the obvious one, is that mathematics can be applied to
the other field. It can do this in a variety of ways, from solution of specific
practical problems to development of broad theories. The second way, the
one which is disregarded by many people, is that the applied field can be
“applied to mathematics.” It can do this by stimulating the development of
new mathematics or by helping solve old mathematical problems.

The relations between mathematics and physics over the years clearly
demonstrate this two-way interaction. Not only have many types of mathe-
matics been used in physics, but also physical problems have been a stimulus
for the development of new mathematics, for example, the calculus. More-
over, occasionally, physical models have been used to solve mathematical
problems, for example certain optimization problems. (For a discussion
of this point, see Polya [1954, Ch. 1I].)

In this book, I explore the interrelations between mathematics and
applied problems from such areas as the social, biological, and environmental
sciences. These interrelations are, for the most part, much newer than those
between mathematics and problems from the physical sciences, and involve
fields of mathematics which until recently have not often been included in
mathematical education. I hope to show first that mathematics can be useful
in solving problems in these newer areas of application, and second, that
these areas can be a stimulus to new and interesting forms of mathematics.



