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Preface

Although the discovery of the platinum complex that we now know to be the first w-alkene
complex, K[PtCl3(C,Hy)], by Zeise in 1827 preceded Frankland’s discovery (1849) of diethylzinc,
it was the latter that initiated the rapidly developing interest during the latter half of the nineteenth
century in compounds with organic groups bound to the elements. This era may be considered
to have reached its apex in the discovery by Grignard of the magnesium reagents which occupy
a special place because of their ease of synthesis and reactivity. With the exception of trimethyl-
platinum chloride discovered by Pope, Peachy and Gibson in 1907 by use of the Grignard reagent,
attempts to make stable transition metal alkyls and aryls corresponding to those of main group
clements met with little success, although it is worth recalling that even in 1919 Hein and his
co-workers were describing the ‘polyphenylchromium’ compounds now known to be arene com-
plexes.

The other major area of organometallic compounds, namely metal compounds of carbon
monoxide, originated in the work starting in 1868 of Schiitzenberger and later of Mond and his
co-workers and was subsequently developed especially by Hieber and his students. During the
first half of this century, aided by the use of magnesium and, later, lithium reagents the devel-
opment of main group organo chemistry was quite rapid, while from about 1920 metal carbonyl
chemistry and catalytic reactions of carbon monoxide began to assume importance.

In 1937 Krause and von Grosse published their classic book ‘Die Chemie der Metallorganischen
Verbindungen’. Almost 1000 pages in length, it listed scores of compounds, mostly involving metals
of the main groups of the periodic table. Compounds of the transition elements could be dismissed
in 40 pages. Indeed, even in 1956 the stimulating 197-page monograph ‘Organometallic Com-
pounds’ by Coates adequately reviewed organo transition metal complexes within 27 pages.

Although exceedingly important industrial processes in which transition metals were used for
catalysis of organic reactions were developed in the 1930s, mainly in Germany by Reppe, Koch,
Roelen, Fischer and Tropsch and others, the most dramatic growth in our knowledge of organo-
metallic chemistry, particularly of transition metals, has stemmed from discoveries made in the
middle years of this century. The introduction in the same period of physical methods of structure
determination (infrared, nuclear magnetic resonance, and especially single-crystal X-ray dif-
fraction) as routine techniques to be used by preparative chemists allowed increasingly sophisti-
cated exploitation of discoveries. Following the recognition of the structure of ferrocene, other
major advances quickly followed, including the isolation of a host of related w-complexes, the
synthesis of a plethora of organometallic compounds containing metal-metal bonds, the char-
acterization of low-valent metal species in which hydrocarbons are the only ligands, and the
recognition from dynamic NMR spectra that ligand site exchange and tautomerism were common
features in organometallic and metal carbonyl chemistry. The discovery of alkene polymerization
using aluminium alkyl-titanium chloride systems by Ziegler and Natta and of the Wacker pal-
ladium-copper catalysed ethylene oxidation led to enormous developments in these areas.

In the last two decades, organometallic chemistry has grown more rapidly in scope than have
the classical divisions of chemistry, leading to publications in journals of all national chemical
societies, the appearance of primary journals specifically concerned with the topic, and the growth
of annual review volumes designed to assist researchers to keep abreast of accelerating develop-
ments.

Organometallic chemistry has become a mature area of science which will obviously continue
to grow. We believe that this is an appropriate time to produce a comprehensive review of the
subject, treating organo derivatives in the widest sense of both main group and transition elements.
Although advances in transition metal chemistry have appeared to dominate progress in recent
years, spectacular progress has, nevertheless, also been made in our knowledge of organo com-
pounds of main group clements such as aluminium, boron, lithium and silicon.

In these Volumes we have assembled a compendium of knowledge covering contemporary or-
ganometallic and carbon monoxide chemistry. In addition to reviewing the chemistry of the cle-
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ments individually, two Volumes survey the use of organometallic species in organic synthesis
and in catalysis, especially of industrial utility. Within the other Volumes are sections devoted
to such diverse topics as the nature of carbon-metal bonds, the dynamic behaviour of organo-
metallic compounds in solution, heteronuclear metal-metal bonded compounds, and the impact
of organometallic compounds on the environment. The Volumes provide a unique record, especially
of the intensive studies conducted during the past 25 years. The last Volume of indexes of various
kinds will assist readers seeking information on the properties and synthesis of compounds and
on earlier reviews.

As Editors, we are deeply indebted to all those who have given their time and effort to this
project. Our Contributors are among the most active research workers in those areas of the subject
that they have reviewed and they have well justified international reputations for their scholarship.
We thank them sincerely for their cooperation.

Finally, we believe that ‘Comprehensive Organometallic Chemistry’, as well as providing a
lasting source of information, will provide the stimulus for many new discoveries since we do not
believe it possible to read any of the articles without generating ideas for further research.

E. W. ABEL F.G. A. STONE
Exeter Bristol

G. WILKINSON
London
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9.1.1 INTRODUCTION
9.1.1.1 Historical Survey

Silica and the silicates form the major component of the Earth’s crust. The name comes from
the Latin word silex, silicis for flint, which itself has been used since the dawn of Man as a weapon
and tool, and is believed to have influenced the shape of his hand.!

In 1771, Scheele obtained silicon tetrafluoride as a gas from silica using hydrogen fluoride.
The element was isolated 40 years later as a powder when Gay-Lussac and Thenard reduced the
tetrafluoride with potassium. Berzelius in 1823 prepared it similarly using potassium hexa-
fluorosilicate and the same year made silicon tetrachloride. This was used by Ebelmen in 1846
to prepare ethyl orthosilicate Si(OEt)4. Then Wohler discovered the volatile hydrides, trichlo-
rosilane SiHCl; and silane SiH4 around 1857, the year in which Sainte Claire Deville first obtained
the element as steel grey pellets.

A superficial similarity in the chemistry of silicon and carbon was becoming apparent with
the isolation of volatile chlorides and hydrides. This culminated in 1863 with the preparation of
the first organosilicon compound, tetraethylsilane Et4Si, by Friedel of France and Crafts of the
U.S.A., working together in Germany. They obtained tetraethylsilane as a volatile liquid boiling
between 152 and 154 °C by alkylating silicon tetrachloride with Frankland’s diethylzinc.? During
the next decade they extended this method to include other alkyl groups, and with Ladenburg
found that aryl compounds of mercury were more effective than those of zinc for preparing ar-
ylsilanes.

In the meantime, the properties of tetraethylsilane and silicon tetrachloride and those of
tetraethyltin, first prepared by Frankland in 1852, enabled Mendeleev in 1871 to predict those
of ekasilicon. While the properties found by Winkler for germanium and its compounds were in
general consistent with those predicted by Mendeleev, germanium is less metallic than at first
anticipated. This has been rationalized in terms of the weak d-orbital screening of the outer
electrons.?

The reaction of orthosilicates with zinc dialkyls was developed in the 1870s by Ladenburg*
then in 1884 Pape reacted trichlorosilane with dipropylzinc. Both tri- and tetra-propylsilane re-
sulted, subsequent bromination yielding tripropylbromosilane and possibly allyltripropylsilane.®
The use of the Wurtz coupling reaction and of sodium alkyls in the preparation of tetraor-
ganosilanes from silicon tetrachloride was introduced through the work of Polis at about the same
time.® However, control of the variety and yield of the products, particularly the partially sub-
stituted halides, resulted only when the Grignard reagents were discovered at the turn of the
century.
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This discovery opened up not only rapid developments in synthetic organic chemistry, but
provided the platform from which organosilicon chemistry could expand. Within four years of
Grignard’s first paper on organomagnesium halides, published in 1900, Kipping in Nottingham
and Dilthey in Zurich independently applied the Grignard reagent to the synthesis of organic
derivatives of silicon. Dilthey reacted silicon tetrachloride with phenylmagnesium bromide, and
the chlorides so obtained were hydrolysed to the silanols and siloxanes. Kipping had prepared
ethylphenylsilicon dichloride and ethylphenylpropylsilicon chloride by stepwise substitution of
chlorine. The dichloride he hydrolysed to an oil which he described as the silicoketone. Three years
previously he had reported diphenylsilicium ketone Ph,SiO to bear little resemblance to benzo-
phenone, and possibly to be a polymer.”

Kipping’s interest in this field developed mainly around the aryl and ethyl derivatives, and he
is justifiably recognized as the father of classical organosilicon chemistry. During the ensuing
30 years he published some 50 papers on this topic. He reported to the Royal Society in his Bak-
erian lecture, delivered in 1936, that ‘the prospect of any immediate and important advance in
this section of organic chemistry does not seem to be very hopeful.’®

Meanwhile, the organic chemistry group of General Electric were seeking better electrical
insulators. The proposal to use glass fibres necessitated the synthesis of a sympathetic polymer
to bind the fibres and be non-porous and water resistant. Rochow developed this polymer at the
invitation of Corning Glass. He had become interested in organometallic chemistry while at
Cornell, where he heard Alfred Stock deliver the George Fisher Baker lectures on boranes and
silanes. (Rochow provided the illustrations for the book subsequently published on these lectures.)
General Electric then provided Rochow with a job in ceramics chemistry in 1935 and three years
later he combined the two fields in an attempt to prepare this polymer.®

Compounds devoid of carbon-carbon bonds but containing a silicon-oxygen skeleton were
suggested and subsequently prepared by hydrolysing a mixture of methyltrichlorosilane and di-
methyldichlorosilane. The polymers resulting had high thermal stability, and the name silicones,
subsequently used for these polymers, was brought into everyday use through wax polishes. The
name silicone had been suggested as early as 1857 by Wohler and was extensively used by
Kipping.

Methylchlorosilanes are now prepared by the process developed originally in 1945 by Rochow
and Patnode using the reaction of methyl chloride with silicon in the presence of a copper catalyst
at 300-400 °C. The careful fractionation of the methylchlorosilanes so formed provides all the
intermediates needed for the silicones industry. The history of organosilicon chemistry draws
on many branches of chemistry and the interleaving of these aspects provides an interesting chapter
in the history of science.!© )

The increasingly successful use of silyl derivatives as intermediates in organic synthesis is re-
flected in the twentyfold increase in the number of papers published in this area in the period from
the early 1960s to 1976. Nevertheless the 270 or so papers published in 1976 in this particular
area represented only just over 10% of the total published in organosilicon chemistry that year,
and more than 400 papers have been published on the topic each year since. The European market
for silylating agents in 1977 was more than twice the global market of 1973, and trimethylchlo-
rosilane and dimethyldichlorosilane have become bulk chemicals.!!

The encylopaedic compilation of organosilicon compounds also reflects this increased interest.
Some 14 000 have been reported up to mid 1961. The 22 000 reported for the subsequent period
up to the end of 1969 included some previously listed, while the ensuing six year period, 1970-1975,
includes 24 000 new compounds.!2 All are cross-referenced with physical properties, so no extensive
tabulations will be given in this chapter, though melting points and boiling points are mentioned
in passing.

The early literature has been extensively surveyed!3 and Eaborn’s book ‘Organosilicon Com-
pounds’ covers the subject up to 1960.'# This has been updated as part of Aylett’s volume of the
fourth edition of ‘Organometallic Compounds’,'#2 and by annual surveys!>-'¢ and specific re-
views,!” and compared with the chemistry of organometallic compounds of the rest of the group.'$
The synthesis and reactions of the silicon-carbon bond were extensively reviewed in 1968 and
1972.19 Particular reference is made to the use of organosilicon compounds in organic synthesis, 20
to organosilicon compounds with specific functional groups'2-2!-22 and to their structure and re-
activity.23.24 Reviews and articles pertinent to organosilicon chemistry are included in the com-
prehensive main group organometallic bibliography, the topicality and breadth of the subject
are admirably summarized in a pair of resource papers in the Journal of Chemical Education,
and its appeal is reflected in the allocation of a complete volume of Houben-Weyl in which physical
properties are extensively documented, following the publication of a short monograph for teachers
on silicon chemistry and applications.??
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9.1.1.2 General Behaviour

The position of silicon in the upper centre of the Periodic Table classifies it as the gentlest of
metals. It possesses few of the metallic features of the heavier elements of its group, with only
the slightest of tendencies to form stable divalent derivatives and conform with the inert pair effect.
While silicon dissolves in aqueous alkali giving orthosilicates, it also generates hydrogen from
hydrofluoric acid, thereby indicating distinct amphoteric behaviour.

The similarity in behaviour of boron and silicon — their diagonal relationship — stems in the
main from the stability of bonds of both elements to oxygen and to fluorine. Both elements have
a tendency to form anionic derivatives with electropositive metals, these derivatives readily hy-
drolysing in acid to silanes and boranes.?® The extensive studies of Sommer and then Eaborn,
devoted to elucidating the mechanism of substitution at silicon, have now led to close comparisons
being made with substitution in phosphorus and organophosphorus derivatives by Corriu.2’

Much of the chemistry of silicon has therefore been considered in the light of elements only
mildly metallic in character and the study of organosilicon compounds was the prerogative of
organic chemists until Rochow introduced the inorganic silicate skeleton. The resurgence of or-
ganometallic chemistry with the discovery of ferrocene coincided with the commercial production
of organochlorosilanes. Silicones were developed to supersede organic polymers, and inorganic
chemists played an increasing role in developing the chemistry of substituted organosilicon
compounds, e.g. R3SiX and R,SiX; where X > C. The gamut of these compounds is now being
used extensively by organic chemists as synthetic intermediates.

In introducing general features of the chemistry of silicon, comparisons can conveniently be
drawn with carbon, particularly in the areas of reactivity and multiple bond formation.

Substitution at silicon is much easier than that at carbon. Attack by protic bases and by organic
nucleophiles makes chlorosilanes excellent synthetic intermediates. This stems from the high rate
of bimolecular nucleophilic substitution which typifies a second period element,28 and takes place
with much poorer leaving groups than substitution at carbon. Thus the Si—F, Si—OR, Si—C
and Si—H bonds can all be cleaved by the appropriate nucleophile. The mechanism of this sub-
stitution will be discussed in detail later (Section 9.1.2.3).

The facility of the above reactions, particularly hydrolysis, is in part due to the strength of bonds
silicon forms with the electronegative elements. The bond strengths and bond lengths are given
in Table 1. It should be emphasized that the bond strengths have been determined by a variety
of techniques, but normally for homolysis, hence the spread of values. Heterolysis includes ioni-
sation potential and electron affinity in the bond strength as well.'# The Si—F bond is one of the
strongest encountered with the Si—O and Si—Cl bonds significantly stronger than the rest. It
is easy to see from this how the silicones industry developed once methylchlorosilanes had been
prepared. The extensive use of silicon compounds as synthetic intermediates in inorganic chemistry
is based on the facile cleavage of Si—C, Si—N and Si—S bonds by chlorides of both main group
and transition metals. Organic compounds silylated at carbon or oxygen can be readily regenerated
using fluoride ion.

Kipping’s attempts to isolate ‘silicone’, the silicon equivalent of ketone, failed partly because
the silicon—oxygen single bond was so strong. The formation of two such bonds upon hydrolysing
the dichlorosilane rendered the formation of a monomer with silicon-oxygen double bond ener-
getically most unlikely (equation 1).

RSiCl, 2% (R,Si0),— = R,Si=0 (1)

Multiple bonds to silicon involving (p-p)7 bonding have long been assumed to be weak, partly
because of size disparity, but also because the Si—X bond is much longer than the C—X one,
thereby decreasing m-overlap. The weakness of the silicon-carbon double bond precludes com-
petitive elimination in methylchlorosilanes by methoxide, in sharp contrast to its reaction with
t-butyl chloride (equation 2).

Me

SC=CH; <% MeMCl MO Me SiOMe (2)
Me” - -

However, an increasing wealth of evidence is being amassed to support the transient existence
of intermediates with multiple bonds to silicon from not only first period (carbon, nitrogen and
oxygen) but also second period elements (silicon, phosphorus and sulphur). The silicon-carbon
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Table 1 Bond Strengths and Bond Lengths of Some Silicon Compounds!
Dissociation Bond length
Bond Compound energy (kJ mol™!) Compound (pm)
Si—H Me;SiH 376,2325,3 3434 D;SiH 148
Si—C Me,Si 318,271,3 2864 Me,Si 189
(Ph3Si)s 186.9-191.78
PhSi(OCH,CH,)3;N 189.4°
Si—Si Me;SiSiMe; 280, 337,5 2844 H;SiSiH»F 233
(MesSi)4Si 23610
(PhsSi)s 237-2418
Si—N Me;SiNMeR 305-3306 (H3Si)3N 174
(R = H, Me¢)
(MC}Si)zNR (Me3Si),N~— 16411
K(dioxan)¥
(Me;Si)3;N Me;SiN=NSiMe; 18112
PhSi(OCH,CH,»)3N 213.49
Si—P H3SiPH, 370 (Me;3Si)3P;
(Me>Si)6P4 225-22913
(MezSi)3P4Bu‘2
Si—O0 Me;SiOMe 530 (H;Si),0 163.114
(Mes3Si),0 44564434 (Me;Si),0 162.6'4
Me;SiOH 4306 cyclosiloxanes 161-165'3
Me3SiO0SiMe; 168.11¢
PhSi(OCH,CH,)3N 165.6°
Si—S Me;SiSBun 33006 (MeSi)4Se 212,917
(MePhSiS); 214,318
Si—F Me;SiF 590 H;SiF 159.5
SiF, 154
Si—Cl Me;SiCl 380, 426,3 410* H;SiCl 204.8
SiCly 201
Si—Br Me;SiBr 310-320, 3346 H;SiBr 220.9
SiBr, 215
Si—1 Me;Sil 235-245 H,Sil 243
Sily 243
Si—Hg  (MesSi);Hg >2007 (MesSi),Hg 25019
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w-bond energy in 1,1-dimethylsilene is estimated to be about 120 kJ mol~! and supports the
structure recently measured by electron diffraction.2° Early attempts to synthesize silabenzene
(1) were thwarted by the reactivity of the polar silicon-carbon double bond. It has now been iso-
lated in an argon matrix at 10 K by the flash pyrolysis of the substituted silahexadienes (2) and



