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Preface

A school-tvpe workshop entitled “Perspectives in Lattice QCD" was held
from 31 October to 11 November 2005 at Nara International Seminar House,
Nara, Japan. This is a part of activities of ILFT (International Lattice Field
Theory) Network, which is a two-year research program sponsored by the
Japan Society for Promotion of Science aiming at building and expanding
a cooperative international framework in the lattice field theories among
universities and research institutions in Japan, the US, Germany, Italy and
the UK.

In the past decade the progress of simulation algorithms and the avail-
ability of more affluent computational resources have enabled us to investi-
gate two- and three-flavor dynamical quark effects with lighter quark masses.
A full QCD simulation with the physical up, down and strange quark masses
are now getting into our view. On the other hand, theoretical understand-
ing of the chiral fermion on the lattice has also developed remarkably since
the early 90s. Although the dynamical quark simulation with the exact
chiral symmetry is extremely demanding, some exploratory studies have al-
ready started. Under these circumstances, the workshop was intended to
provide us an opportunity of systemaic understanding of the recent progress
in lattice QCD and basic grounds for thinking of the future direction. The
lectures and seminars covers a wide range of subjects including forefront
topics:

e Renormalization group and fixed point action,

e Algorithins in lattice QCD simulation,

e Lattice QCD with the domain decomposition algorithm,

e Chiral fermions on the lattice,

e Numerical simulation with the overlap fermion,

e On-shell improvement and nonperturbative renormalization.
e Twisted mass lattice QCD,

e Phenomenology with lattice QCD,

e Chiral perturbation theory



vi

They are delivered at an advanced level based on the lecturer’s expertise
in the subject. We would like to express our sincere gratitude to all the
speakers for their excellent lectures and seminars. The written version of
the lectures are collected in this volume, which is indebted to the efforts of
the contributers.

We gratefully acknowledge financial support by the Japan Society for
Promotion of Science, the Ministry of Education, Culture, Sports, Sci-
ence and Technology, the Center for Computational Sciences (CCS) in the
University of Tsukuba. We thank young physicists at the University of
Tsukuba, KEK and the University of Tokyo for their devoted assistance in
preparing the workshop. Special thanks are due to Tomomi Ishikawa, Naoto
Tsutsui and Naoya Ukita who prepared a first draft to aid the lecturers in
the preparation of their manuscript.

We hope this kind of school will be succeeded and contribute to the
progress of the field in future.

Editor

Yoshinobu Kuramashi
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FIXED POINT ACTIONS, SYMMETRIES AND SYMMETRY
TRANSFORMATIONS ON THE LATTICE ~

P. HASENFRATZ

Institute for Theoretical Physics,
Unwversity of Bern,
Sidlerstrasse 5, ("H-3012 Bern, Suitzerland

Unwanted symmetry breaking by the lattice regularization will produce cut-off
effects and distort the results. Symmetries are realized on the lattice frequently
in an unusual way. Fixed point actions preserve all the classical symmetries of
the theory and help to abstract not only the symmetry conditions, but the
form of the lattice symmetry transformations also.

1. Introduction

Defining the action of a field theory on a hypercubic lattice is the first step
towards a non-perturbative treatment of the corresponding quantum field
theory. It seems to be obvious that certain symmetries of the continuum
action (like space-time independent, ‘internal’ symmetries) will be trivially
respected, while certain space time symmetries (like infinitesimal transla-
tions, rotations) unavoidably will be broken by the lattice action. This is,
however not true. The internal chiral symmetry in its well known contin-
uum formulation can not be kept on the lattice without violating some basic
principles !. On the other hand, simple renormalization group considera-
tions suggest that there exist lattice actions which inherit all the features
of translation and rotation symmetries of the continuum. Even more, they
inherit all the features of all the continuum symmetries. Since the action
defines the classical field theory, these lattice formulations are classically
perfect 2. Refering to their role in renormalization group theory we shall
call these actions here 'fixed point (FP) actions’.

These theoretical considerations are directly connected to earth bound

*This summary is based on parts of the lectures given at the ILFTN workshop at the
Nara International Seminar House, 31. Oct.-11. Nov. 2005.



numerical experiments. Unwanted symmetry breaking by the lattice regu-
larization will produce cut-off effects and distort the results.

On the basis of the accumulated experience on stochastic calculations
since the first primitive computers entered the scene more than fifty years
ago, it is not very probable that we shall see a great breakthrough in full
QCD calculations in the near future. It is hard to expect miracles: good scal-
ing, good chiral properties, theoretical safety and expenses will remain in
balance. Probably, we shall see a plethora of full QCD simulations adapted
to the physical problem investigated. In some interesting, but difficult sit-
uations like the e-, or d-regime the approximated fixed point action might
be a competitive choice.

2. Cut-off effects: a numerical experiment on the running
coupling

We shall start with an example. Fig 1. shows the stochastic values of a
physical quantity as the function of the lattice resolution a®. The results
are plotted against a?, since the quantity is expected to approach the con-
tinuum limit with a® corrections if a? is small. Actually, the figure refers
to a d = 2 quantum field theory, the two dimensional O(3) non-linear o-
model. This model has many analogies with a d = 4 Yang-Mills theory: it
is asymptotically free, has dimensional transmutation (i.e. it has massive
excitations although the classical theory is scale invariant) and has exact
classical solutions with topology (instantons).

The continuum extrapolation does not seem to be easy: the onset of the
a® behaviour is delayed. One might perform the continuum extrapolation
with an Ansatz including a? powers and logs and obtain an estimate for
the continuum limit. One might also perform further simulations on larger
lattices with smaller a and make the extrapolation more reliable.

An alternative procedure is to simulate a better action in order to make
the extrapolation easier. For example, one might consider a theoretical con-
struction for a local action on the lattice which has no cut-off effects at all in
the classical field theory. Such local actions, called fixed point (FP) actions,
exist and, as we shall discuss, are defined by classical equations. These equa-
tions can be solved approximately and a local action can be constructed
which is approximately classically perfect. Simulating this action produces
the full triangles in Fig.2. An excellent global behaviour is observed. Of
course, these results should be weighted with the expenses of the numerical
procedure. Constructing a good approximation to the FP action requests
analytic and numerical work. The simulation is more expensive than that



d=2 running coupling
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Fig. 1. The cutoff effects and the continuum extrapolation of m(2L)2L if m(L)L =
1.0595 3, where L is the spatial size of the lattice and m(L) is the mass gap in this box.

of the simplest discretizations. The gain might also depend on the physical
quantity measured. In this example the FP action seems to be a very useful
idea.

The physical quantity considered above is a specially defined running
coupling in this model. Since an analogous quantity plays an important role
in QCD, let us discuss it in this simpler model.

The continuum action of the d = 2,0(3) non-linear o-model in Eu-
clidean space reads

A=o /d'—’fousa“s, p=01., S=(5.5%5%. S?-=1.

g
(1)
where the bare coupling g is dimensionless. Consider this system in a fi-
nite, periodic box of size L. Take a small box L <« 1/m, where m is the
infinite volume mass-gap. From the point of view of low energy excitations
the sector with non-zero momenta, and so the r!-dependence of the field



d=2 running coupling

Fig. 2. The same as Fig.1 but adding data obtained with an approximation of the fixed
point action?.

S(2°, x!), can be suppressed in this case
L
S(z% z!) ~ S(zY). A~ 5= /dIOBOSBOS. (2)
g
Here S is a unit vector with three components which depend on z°, so
the action in Eq. (2) describes the quantum mechanics of a free particle
moving on the surface of a unit sphere: we have a quantum rotator. The
energy spectrum is E; = ([ +1)/20 with © = g/L. The lowest excitation
in this box (the mass-gap m(L)) is

m(L) = Ey — Ey=g/L. (3)

Since the bare coupling ¢ — 0 in the continuum limit, the rotator exci-
tations are indeed much lighter than those with non-zero momenta. The
dimensionless quantity Lm(L) is a valid definition of the scale dependent
('running’) coupling constant ¢(L). In a small box L < 1\5(’3) (Ao(a) is the
Lambda-parameter of the theory) i.e. in the ultraviolet region, it is equal
to the bare coupling g.
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Fig. 3. The cutoff dependence of high precision data obtained with two different
actions? are shown in this figure. The starting coupling is g(L) = Lm(L) = 1.0595
as previously. The cutoff dependent running coupling in a box of 2L is denoted here by
Y. In the continuum limit ¥ — g(2L).

Assume that at some value of L the running coupling takes the value
g(L) = r, where r is some positive real number. The dynamics of the O(3)
o-model defines then the value of g(2L) in the continuum limit. Since the
theory is asymptotically free, we expect that g(2L) > g(L). At finite lattice
constant a this number depends on the resolution. This cutoff dependence
is shown in Fig. 1 for the arbitrarily taken case with r = 1.0595.

The data in Fig. 1 are more than ten years old. They have large statisti-
cal errors and do not go deep in the continuum limit. Fig. 3 shows some more
recent results with two simple actions 1. Universality predicts that the two
sets of data hit the same point in the continuum limit. This makes the
extrapolation easier and leads to the prediction g(2L) = 1.2614(3). A few
years later the exact continuum number became known also °: 1.261208 .. ..
It is satisfying to see that using special cluster algorithms and estimating
the errors carefully high precision results can be obtained in this d = 2
model. For much more difficult problems, like QCD, one would like to see
more theoretical inputs, however.

"Note that the data are plotted against a/L in this figure.



3. Renormalization group and the fixed point action

A QFT is defined over a large span of scales from low physical scales up to
the cut-off which goes to infinity in the continuum limit. Although field vari-
ables associated with very high scales do influence the physical predictions
through a complicated cascade process, no physical question involves them
directly. Their presence and indirect influence makes it difficult to establish
an intuitive connection between the form of the interaction and the final
predictions. The presence of a large number of degrees of freedom makes
the problem technically difficult also. It is, therefore a natural idea to par-
tially integrate them out in the path integral. This process, which reduces
the number of degrees of freedom, taking into account their effect on the
remaining variables exactly, is called a renormalization group transforma-
tion &7 (RGT). A technically simple introduction to lattice regularization
and Wilson’s RG can be found in Sect.2-3 of Ref. 8.

Consider some lattice regularization of the SU(N) Yang-Mills gauge
action

A= 8% /Fﬁu(x)FSV(:r), a=1,..,N2-1, (4)

where 3 = 2N/g? and g is very small. Imagine performing repeatedly RG
transformations by some gauge invariant averaging. Tree level perturbation
theory predicts that all but .one of the possible gauge invariant operators
die out rapidly under this repeated averaging. The surviving operator is a
special discretization of Eq. (4) whose detailed form depends on the averag-
ing procedure. This special operator (action) is called the fixed point of the
RG transformation since it is reproduced by the transformation. The form
of the fixed point action is determined by classical saddle-point equations!®.
The theoretical properties of the fixed point action and the construction of
approximate solutions to be used in simulations are based on these saddle-
point equations which will be our starting point in the next section. For
further details, which will not be needed here, we refer to the literaturel®.

4. Saddle point equation for the fixed point action in QCD

The saddle point equation and its solution, the fixed point action, depend on
the averaging procedure. Let U(n),, ¥y, ¥, denote the gauge and fermion
fields on a d = 4 Euclidean ('fine’) lattice whose points are indexed by
n. The averaged ('blocked’) gauge and fermion fields will be denoted by
V(nB)us Xng, Xng- This lattice ("coarse’) is indexed by ng. The gauge fields
are SU(N) matrices, the fermion fields are Grassmann variables.
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Fig. 4. A simple example for a gauge ivariant blocking

The averaging procedure for the gauge variables is coded by an N x N
complex matrix Q,(npg). It is a gauge covariant average of the fine link
variables U in the neighbourhood of the coarse link (npg,pu), ie. it is a
weighted sum of paths (each path being a product of U matrices) between
the points ng and np + [i of the coarse lattice. A simple example for a scale
2 blocking is (see Fig. 4):

Qu(ng) = (1 —6c)U ( )U (n+ i) +
> U(m)Usu(n+ 2)Uu(n + o+ 0)US(n + 2f2)+ (5)

v#u
Ul(n = 2)Uu(n — )Uu(n + o — 2)Uy(n + 20 — D)) |

where ¢, the relative weight of the staples versus the central link, is a pa-

rameter.
The fixed point action has the standard structure
FP/ — FP(
AT (X V) = Ay + Y Xay DFP(ng n)xny, - (6)
np, TlB

where AgP(V) is the gauge action and DfF is the fixed point Dirac oper-
ator. The fixed point gauge action is determined by the equation!%:!1

AFP(V) = min (Afp(U) — 285 [ReTr(Vu(np)QL(np)) — (Qu(”B))]> :
(7)

where

f(Q) = max [ReTr(IVQT)]. W e SU(N). (8)

Given an arbitrary gauge field configuration {V'} on the coarse lattice one is
looking for the value of the FP action (a real number) on this configuration.
This number is given by the minimum on the r.h.s. of Eq. (7) with respect
to the gauge field configuration U on the fine lattice. The FP action should
be local. only such solutions are acceptable. The parameters x4 and ¢ in
Eq. (7) and Eq. (6) can be used to optimise the action being not only local

but as compact as possible.



The FP Dirac operator satisfies the equation

py= 1 F -
DFP(V) ! = Ky nB n'y +b Z mm nu.nD P(Umin)n'ln/W(Umin)jl/.n/B

ng, TIE
(9)
where Upiy, is the minimising field in Eq. (7), w(U) defines the gauge co-
variant averaging of fermions, while ky and by are parameterst. Eqgs. (7,9)
determine the FP action of QCD.

n,n’

5. Perfect classical lattice theories

The FP Yang-Mills action and the FP Dirac operator have amazing prop-
erties: they are perfect on any physical question in the classical limit even
on coarse lattices. So, for example, the classical (Euler-Lagrange) equation
obtained from A;?P(V) has exact, scale invariant instanton solutions on the
lattice. The value of the instanton action is the same as in the continuum.
This is true even if the instanton size is a few lattice unit only. Another
example is the free FP Dirac operator: DFP(V = 1). The energy-impulse
dispersion relation E = E(p) = |p| is exact and E € (0,00) like in the
continuum.

For illustration let us prove the statement on instantons. We show
first that if the lattice gauge configuration V satisfies the FP classical
(Euler-Lagrange) equations 5.A5P(V)/6V =0 and V is a local minimum of
AfP(V) then the configuration Upnin, which minimises the r.h.s. of the FP
equation Eq. (7) satisfies the FP classical equations as well. In addition,
the value of the action is the same: AFF (Upin(V)) = AFP (V).

The argument is as follows. In the equation (5A5P(V)/6V = 0 the FP
action can be replaced by the r.h.s. of the FP equation Eq. (7). The r.h.s.
of Eq. (7) depends on V explicitly and also implicitly through the V' de-
pendence of Un,in. This last contribution is zero since Upy;p is the minimum.
The explicit dependence comes from the middle term in the r.h.s. of Eq. (7),
therefore this term takes its maximum and so the last terms cancel each
other. Therefore AgP(U) takes its minimum at Upipn, 1.e. Upin 1S a solution
of the Euler-Lagrange equation of the action AgP(U) on the fine lattice
and

ASP V) = AP (Uia) - (10)

*For simplicity we quoted the FP equation for the inverse of the Dirac operator, which
can be used only if D¥'F has no zero modes



This result implies that to any solution V' with a characteristic size p there
exists another solution Upin{V) of size 2p 8 with the same value of the ac-
tion. i.e. these are scale invariant solutions. Repeating the argument there
exist solutions with scale 2%p. . .. 25p. .. The very large solutions become
arbitrarily smooth and the value of the action is equal to the continuum
value. Since this value is independent of p. all the solutions have the con-

tinuum value.

6. The FP Dirac operator satisfies the Ginsparg-Wilson
relation

Nielsen and Ninomiya! demonstrated that if the lattice Dirac operator satis-
fies some basic conditions (locality and massless fermions without doublers),
than the standard chiral symmetry relation Dvs + 75D = 0 is unavoidably
violated. In a following paper Ginsparg and Wilson!'? argued that the cor-
rect chiral symmetry relation on the lattice is Dv5; +45D = D~sRD, where
R is an arbitrary local operator, trivial in Dirac space. No Dirac operators
were around that time which satisfied this non-linear relation and so this
work and the message remained largely unnoticed. More than fifteen years
later the FP 13 and soon after the overlap '* Dirac operators were identified
as solutions of the Ginsparg-Wilson relation.

Using the FP equation Eq. (7) it is easy to demonstrate that DfP
satisfies the GW relation. Eq. (7) refers to a fine and a coarse lattice whose
lattice units differ by a factor of 2. Start from a very fine lattice, take k
very large and consider the anticommutator of 45 with the inverse of F'P
Dirac operator on the coarse lattice:

{vs, DEP , (V)71}. (11)

np.n'g
On the r.h.s. of Eq. (7) the first term gives 2/K 8y, /. In the second term
D! P lives on the verv fine (for k — ~o. infinitely fine, i.e. continuum) gauge
configuration Upin(V'). Any legitim Dirac operator goes over the continuum
(massless) Dirac operator in this limit. We get then

. 2
- FP -1y & .
(5 DI, 07 = (12)
or equivalently
5 2 N
{75. DFP(V)} = —DFP(V)ysDFP(V). (13)
Kif

We consider a scale=2 RG transformation
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If the RG transformation is a factor of 2 coarsing, then the equation for
DFP should be iterated to push the fine lattice towards the continuum. In
this case one obtains

{r5. DFP(V)} = %D“”U«*)QR%DFPW). (14)

where 2R is a local operator and is trivial in Dirac space.

7. Lattice regularization and symmetry transformations

The GW relation implies the existence of an exact chiral symmetry trans-
formation on the lattice!®. Assume, the lattice Dirac operator satisfies the
GW relation

{5, D} =2DvsD. (15)

Then the lattice fermion action ¢, D, /¢, is invariant under the modified
chiral transformation

8¢ = ieys(1 — aD)y,
8y = iey(1 — aD)s (16)

where, exceptionally, the dependence on the lattice unit a is also indicated.
The leading term in the transformation has the standard continuum form,
while the O(a) correction depends on the Dirac operator and so on the
gauge field also.

Although many of the consequences of the GW relation can be obtained
by other methods'®, knowing the symmetry transformation opens the way
towards standard powerful techniques like Ward identities derived from the
path integral. Although the action is invariant under the transformation in
Eq. (16), due to the gauge field dependence there is a non-trivial measure in
the case of a U(1) chiral transformation which produces the correct chiral
anomaly.

There is a systematic way to derive the GW relation and the related
symmetry transformation. The method gives a better intuitive understand-
ing and allows also the generalisation for other symmetries!”. We shall con-
sider a free fermionic theory but the procedure can be applied to interacting
theories also.

Consider free massless fermions in the continuum with the action

Y(x)D(xz’)y(z"), where D, = (4%0,),. Put a lattice over the con-
tinuum Euclidean space and perform a RG transformation averaging the

continuum variables into lattice variables: ‘blocking out of continuum’™®,



