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This 56th volume of Progress in Optics presents five chapters that describe
developments in various areas of classical and quantum optics.

In the first chapter, by V. Torres-Company, J. Lancis, and P. Andrés, the
mathematical similarities between the paraxial wave equation and for-
mula describing wave propagation in a dispersive medium are used to
explore several space-time analogies in optics.

In the second chapter, contributed by T. G. Brown, a novel type of
beams, namely beams whose state of polarization varies with position,
are reviewed, and their generation and applications are discussed.

In the third chapter, by W. Leonski and A. Kowalewska-Kudlaszyk,
various types of so-called quantum scissors that produce output states of
finite dimensionality are discussed.

In the fourth chapter, by M. Chekhova, various methods for produc-
ing biphotons with prescribed spectral and polarization properties are
reviewed. Their applications such as quantum metrology are discussed.

The final chapter, by ]. P. Torres, K. Banaszek, and I. A. Walmsley, deals
with the engineering of nonlinear sources to enable the control of quantum
correlations in various degrees of freedom of the optical field.

Emil Wolf
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The Institute of Optics
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Rochester, New York

November 2011
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1. INTRODUCTION

In the last decades, the generation of pulsed beams with pulse durations in
the order of pico- and femtosecond has constituted an important topic for
the physics and engineering communities, where researchers find them-
selves continuously pushing the limits to satisfy quite radical premises
such as ultrafast, ultrabroad or ultrasmall. The characteristics of this kind
of optical radiation, that is, broadband spectrum, enormous temporal res-
olution, high peak but low average power, potentially high repetition
rate, and high spatial coherence make it an indispensable tool to develop
many applications in different fields of science and technology (Fermann,
Galvanauskas, & Sucha, 2003).

Atasystems level, the so-called space-time analogy constitutes a source
of inspiration to design and implement new schemes for processing
these ultrafast optical signals based on concepts borrowed from the well-
established field of Fourier optics (Goodman, 1996), leading to what is
now popularly termed as Temporal Optics. The key relies on noting the
mathematical similarity between the equations that govern the parax-
ial diffraction of one-dimensional monochromatic light beams and those
describing the distortion of plane-wave pulses in a first-order dispersive
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medium (Akhmanov, Sukhorukov, & Chirkin, 1969; Treacy, 1969). Thanks
to the continuous advances in the optoelectronics and optical commu-
nication industries, the analogy can be extended to include other ele-
ments such as imaginglenses (Kolner, 1994a) or prisms (van Howe &
Xu, 2006). These optoelectronic tools have paved an avenue for creating
innovative temporal processing systems, bringing the “ultra” appella-
tive to fields as diverse as optical interconnects, optical communications,
microwave photonics, biophotonics, or quantum information processing,
among others.

In this review, we shall provide the most basic notions for the under-
standing of the space-time analogy, including the fundamental elements
and their possible implementations with state-of-the-art technology. We
provide a comprehensive approach, based on a temporal matrix formal-
ism (Nakazawa et al., 1998), to describe the characteristics of some of the
most widespread system processing architectures. Special emphasis shall
be paid on their applications in the above mentioned fields, highlighting
not only their innovative character but offering a comparative study with
respect to other, more conventional, solutions. Finally, we will review the
extension of the space-time analogy to the noncoherent (Lancis, Torres-
Company etal., 2005) and even to the nonclassical (quantum) regime (Tsang
& Psaltis, 2006; Torres-Company, Lajunen et al., 2008), where this anal-
ogy still offers some potential to design — and sometimes interpret — new
physical phenomena with the aid of the notions of classical Fourier optics.

2. ULTRASHORT LIGHT PULSE PROPAGATION IN
DISPERSIVE HOMOGENEOUS MEDIA

In this section, we introduce the fundamental equations describing the
linear distortion of an ultrashort light pulse in a dispersive homogeneous
medium. Such a basic physical problem constitutes the cornerstone of
ultrafast optical signal processing.

Let us assume a scalar optical field, described by its analytic signal
U(r,t'), propagating linearly in a waveguide with translational symmetry
through the z-direction z and filled with a homogeneous lossless disper-
sive medium. The propagation constant is B(«’) = n(e')e’/c, where c is
the speed of light in vacuum and n(«’) the frequency-dependent refractive
index. We can then write

U, t') = A(x, )y (z, ') exp[—i(wot’ — Boz)]. @
where v/ (z,t') is the pulse envelope, which modulates the monochromatic

carrier wave of angular frequency wy; the constant Sy = B(wp); and A(x, Y)
is the transversal spatial distribution of the mode, evaluated at wy. Once
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A(x,y) is calculated, we only need to know ¥ (z,t') to determine U(r, t)
at every z position. The evolution of ¥/ (z,t') is then described by a wave
equation.

Since the functional form of B(w’) is usually unknown, it is very useful
to perform a Taylor expansion (Agrawal, 2007)

Bw') = Bo + Br(w — wp) + %(w’ —wp)? + %(w’ —wp)P 4 (2

where B, = d"B(@')/dw™|.y=w, is the nth-order dispersion coefficient of
the waveguide, with n =0,1,2,3,... From now on, we will express the
temporal variations of the pulse in a reference framework moving at the
group velocity of the wave packet, t = t' — fz.

The wave equation describing the envelope distortion is of second
order in z. In order to reduce this equation to first order, the slowly
varying envelope approximation (SVEA) is usually invoked in the mul-
ticycle regime (Agrawal, 2007). This approximation requires that the
function ¥ (z,t) does not change significantly through a distance com-
pared with the carrier wavelength, and the pulse duration to be much
larger than the carrier oscillation period. Mathematically, it is translated
into |8y (z,1)/0z| < Bol¥ (z, 1) and |3V (z,1) /3t « wol¥ (z, 1)|. Both inequali-
ties are guaranteed whenever the optical frequency bandwidth, Aw, is
much less than the carrier frequency, Aw <« wp.

Within the SVEA, we have
oY (z, t
5D Hye,n, &)
0z
where the (Hamiltonian operator) H= -3, - %(‘,’% Alternatively,

Equation (3) can be rewritten in the frequency domain by Fourier trans-
formation,!

1.31!7(2, w)

e = Hyr (z, w), 4)
a0z

where ¥ (z, w) is the Fourier transform of ¥ (z, t) and

H= —Z%w”. (5)

n=2

! In the following, the angular frequencies are referred at the baseband. They are referred to the optical
frequencies, o', by a shift w' = o + ax.
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This equation can be easily integrated as

¥ (z,0) = exp [i > —ﬂr'l’—'zw”} V(z=0,w). (6)

n=2

Therefore, the dispersive medium acts as a phase-only spectral filter.
Sometimes, it is useful to write the dispersive terms in the more compact
form @, = B,z. When n =2, po is called the group velocity dispersion
(GVD) coefficient, and ®; the group delay dispersion (GDD) param-
eter. Analogously, when n =3, B3 is the third-order dispersion (TOD)
coefficient.

3. FIRST-ORDER APPROXIMATION: SPACE-TIME ANALOGY

We are particularly interested in the case in which only the first term of
the operator contributes,

Ve _ B2 %Y (z,1) )

0z 2 o
Since it implies a second-order expansion in Equation (2), the medium is
said to be parabolic. This first-order approximation is physically plausi-
ble whenever Aw « 3|f2/B3|. As an example, for standard single-mode
fiber (SMF) and a waveform centered in the telecommunication wave-
length (Ao = 1.5 pm), the fiber coefficients are fp = —21.7 ps2 /kmand B3 =
0.1ps®/km. The signal should then have an optical bandwidth shorter
than ~100 THz.

Equation (7) is a Schrodinger-like equation for a free particle, ubiqui-
tous in Physics scenarios. In particular, this equation is mathematically
identical to that describing the one-dimensional (1D) scalar diffraction of a
paraxial monochromatic beam propagating in the z-direction (Goodman,
1996)

AUa(z,X) 1 92Ue(z, x)

et . e ®)
0z 2ko 9x2

where Ue(z, x) denotes the transversal profile of the 1D beam and ko the

wave number.

The mathematical similarity between the Equations (7) and (8) is what
we know as the space-time analogy, mentioned in the Introduction. Table 1
summarizes the transfer rules connecting both domains. This connection
between diffraction and dispersion was found independently by two dif-
ferent groups at the end of the sixties (Akhmanov, Sukhorukov, & Chirkin,
1969; Treacy, 1969). On the other hand, Papoulis had pointed out a formal
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TABLE 1 Space-Time analogy transfer rules

Space Time
Description Variable/Parameter Variable/Parameter Description
Position X t Proper time
Spatial frequency 2ru 1) (Baseband) angular

frequency

Wave number™! 1/ko —Bo GVD coefficient
Paraxial propagation exp[—i2n?zu? /ko) explidrw? /2] First-order dispersion
factor (distance z) (GDD parameter ®;)
Spatial lens factor exp[—iku.\'2 /(2] exp[iKi2 /2] Time lens factor
(focal length f) (chirping rate K)

similarity between diffraction and chirp radar, including the equivalent of
spatial lenses (Papoulis, 1968a). Later on, we found in the literature some
theoretical research work performed by Saleh and Irshid (1982) about an
extension into the temporal domain of the Collet-Wolf equivalent theo-
rem regarding spatially partially coherent light (Mandel & Wolf, 1995). In
the same decade, it is worth mentioning the temporal equivalents of the
Talbot effect proposed by Jannson and Jannson (1981) and spatial Fourier
transformation (Jannson, 1983). However, it was not until the pioneering
work of Kolner and Nazarathy (1989) who, inspired on developing pulse
compression techniques based on electro-optic phase modulators (Kolner,
1988), developed a formal treatment of this analogy to include what we
know today as “time lenses”. It became then evident that a huge avenue
of temporal equivalent systems for ultrafast signal processing was fea-
sible to build, given the instrumentation available at that time (see e.g.,
Lohman & Mendlovic, 1992; Kolner, 1994a; Godil, Auld, & Bloom, 1994;
Papoulis, 1994; Mendlovic, Melamed, & Ozaktas, 1995).

4. ELEMENTS AND THEIR IMPLEMENTATIONS
4.1. Temporal ABCD Matrices

In the previous section, we have introduced the formalism of the space-
time analogy and advanced that it can be extended to include other
photonic components apart from first-order dispersive media, such as
time lenses. In this section, we provide a unified formalism to describe
the linear distortion of the pulse envelope in a system composed by con-
catenating different elements that are susceptible to be described within
the framework of this analogy: the so-called “Gaussian” systems. Each
element in a Gaussian system is mathematically characterized by a uni-
tary 2 x 2 matrix. The whole system is quantified by a matrix calculated
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by the multiplication, in the right order, of each of the elements that com-
pose it. This formalism is well known in spatial first-order Fourier optics,
which works in the paraxial regime (Siegman, 1985; Collins, 1970; Palma &
Bagini, 1997), and has been adapted into the temporal domain (Dijaili,
Dienes, & Smith, 1990; Nakazawa et al., 1998; Mookherjea & Yariv, 2001).

Concretely, the action of any linear system on the input complex
envelope of a short light pulse, ¥in(f), can be characterized as a linear
superposition

110(“‘11.’“‘) Z/Wln(t/)K(tlt’)dt// (9)

where the system is described by the kernel K(t,t') and ¥ou(t) denotes
the output complex envelope. In the case in which the linear system is
Gaussian, the Kernel takes the following form

JVEpexp |5 (A2 + DR —2t)| ifB#0
\/;exp [%QZ] S(t' —t/A) ifB=0'
Here the constants A, B, C, and D account for the system’s matrix coeffi-

cients. The reason why these systems are called Gaussian is because of the
quadratic dependence in the exponential term.

Kt t) = (10)

4.2. Spectral Dual Formalism

In temporal optics, there are some situations in which the Fourier trans-
form of the envelope, ¥ (w), may be the physical magnitude of interest,
rather than v/ (t). Of course, they are connected each other by a Fourier
transform relation and both carry the same quantity of information. Since
any linear system in time is linear in frequency too, it is useful to pro-
vide a similar analysis of Equations (9) and (10) in the dual space. By dual
we mean that these devices behave identically from a mathematical point
of view, but their action is performed in the Fourier domain (Papoulis,
1968b). Thus, we can write

Vout(®) = / Vin(@)K(w, " )dw, (11)

where the Kernel in the frequency domain forms a Fourier transform pair
with the Kernel in time, that is,

K(w,o') = f / K, t") expli(wt’ — o't")]dt'dt". (12)



8 Space-Time Analogies in Optics

For the particular case in which the system is Gaussian, it becomes Gaus-
sian in the spectral domain too and therefore a similar structural form of
Equation (10) holds,

K(w, ') = [ \/Texp [—Iwa ]S(w —w/Ay) ifB, =0 '

Of course, the dual coefficients are related to the matrix parameters A, B,
C, and D in the time domain. By inserting Equation (10) into (12), we easily

obtain
A, B, (A BY' (D -C 14)
C, D,) \C D) ~\-B A)
Equations (12) and (14) imply that the action of a Gaussian system in the
spectral domain is mathematically identical to the action of a Gaussian
system in the temporal domain whose matrix elements are provided by

the inverse matrix. The implications of this statement will become clearer
in the following sections.

(13)

4.3. Basic Photonic Components

Within the previous matrix formalism, we now proceed to describe the
mathematical structure of some devices that will probe very useful in tem-
poral optics applications and describe briefly their implementation with
current technology.

4.3.1. Group Delay Dispersion (GDD) Circuit

As previously advanced, a GDD circuit is an element designed to
introduce a quadratic phase factor in the spectral domain, Vout(w) =
expli®2w? /2]Yin(w), where ®; is the GDD coefficient. The corresponding

matrix is
A B\ _ (1 &
(¢ o= ) as)

These photonic components, as highlighted in Table 1, constitute the tem-
poral equivalent of the paraxial diffraction. However, we must note that
while diffraction only takes place for positive wave numbers in tempo-
ral optics, the GDD parameter can be positive or negative, depending
on the material component, waveguide structure, and the signal’s carrier
frequency. This subtleness certainly opens exciting new possibilities for
ultrafast signal processing.



