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Les chiens aboient, les chats miaulent,
c’est leur nature;
nous nous sommes mathématicienne,
c’est la notre.



Preface

A mathematical theory is considered to be elegant if it allows us to model
various notions with only a few basic concepts. From this point of view,
category theory is elegant. The concepts of a category, a functor, a natu-
ral transformation and limits provide a strong expressive power. Universal
coalgebra is another powerful and elegant theory, based on category theory.
Categorical coalgebras are the dual objects of algebras; they are used to
model several kinds of automata and more generally to model transition
and dynamical systems. The basic notions of algebras, homomorphisms
and congruences from universal algebra correspond to coalgebras, homo-
morphisms of coalgebras and bisimulations, respectively in the theory of
coalgebras.

Universal algebra and coalgebra theory are studied here by a category
theory approach, using F-coalgebras and the dual concept of F-algebras
for a set-valued functor F'. This approach allows similar ideas and proofs
for the basic results for both F-algebras and F-coalgebras, but it is not as
general as category theory itself. But also there are some structures which
do not admit any representation as coalgebras. The concept of a clone, for
instance, while one of the most important concepts of universal algebra, has
no counterpart in the general theory of coalgebras. Clones appear only in
a particular case, for coalgebras of type 7, as clones of co-operations. This
was the motivation for our comparison of clones of operations and clones
of co-operations.

Coalgebras based on a functor were first used to dualize the Eilenberg-
Moore construction ([60], [3]). In [5] a coalgebraic approach was used
to describe the dynamics of deterministic automata, and later coalgebraic
methods were applied to infinite data structures in [6]. Aczel and Mendler
suggested in [1] a way to specify semantics of processes by means of final
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viii Universal Algebra and Coalgebra

coalgebras. This idea is expressed more explicitly in [2], and culminates in
the argument that syntax is an algebraic phenomenon while semantics are
coalgebraic.

Not all aspects of the theory of F-coalgebras are covered in this book: for
instance, the duality between the equational theory of universal algebra and
modal logic is not considered. We believe however that we have presented
a clear overview of the area, from which further study may proceed. The
reader is also encouraged to tackle the problems listed as exercises in each
chapter, to further consolidate the theory and applications presented.

The material of this book is based on lectures and research seminars
given by the first author and his students at the University of Potsdam
(Germany), and the authors are grateful for the critical input of a num-
ber of students. Some of the material was also presented as a part of the
DAAD-funded project “Centre of Excellence for Applications of Mathemat-
ics” at the South-West-University Blagoevgrad, Bulgaria. The work of the
second author was funded by the NSERC of Canada.

K. Denecke and S. L. Wismath
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Introduction

The purpose of this book is to study the structures needed to model objects
in the two areas of algebra and theoretical computer science. Universal or
general algebra is used to describe algebraic structures, while coalgebras
are used to model state-based or finite-state machines in computer science.

Most mathematicians first encounter algebraic structures in the classical
examples of groups, rings, fields and vector spaces. In each of these areas,
common themes arise: we have sets of objects which are closed under one or
more operations performed on the objects, and we are interested in subsets
which inherit the structure (subgroups, subspaces, etc.), in mappings which
preserve the structure (group homomorphisms, linear transformations, etc.)
and construction of new structures from old, for instance by Cartesian
products or quotients. We can also classify our structures according to the
laws or identities they satisfy, as for instance with commutative groups or
groups of order four.

In universal algebra we abstract and generalize from these examples to a
core structure of an algebra: a set A of objects, with one or more operations
defined on the set. We study substructures, homomorphisms and product
algebras, and we classify algebras according to the identities they satisfy.
To study such algebras we also need to know how many operation symbols
our algebra has, and the arity of each one. This information is called the
type or signature of the algebra. In general we assume a type indexed by
some set I: for each i € I we have an operation symbol f;, of arity n; > 0,
and we write the type as 7 = (n;)ier.

While universal algebras can be used to model most algebraic structures,
they are not as useful in modelling state-based systems. The main reason for
this is the following. An n;-ary operation on set A is a mapping f4 : A™
A, which combines n; “input” elements of A into one output element. In
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a state-based system however, we often have the opposite situation: we
need to map a single state to an output which carries several pieces of
information, for instance to a state-output-symbol pair. That is, we need
mappings from set A to some more complex set involving A. Originally a
co-operation on set A was defined to be a mapping from A to a copower
AY™ of A, that is, a disjoint union of n copies of A for some number n
which is the arity of the co-operation. A co-algebra was then a structure
consisting of a set A with one or more co-operations defined on it. Again
we have a type for the coalgebra, indexed by some set I, and we look at
coalgebras of type 7.

Coalgebras of type 7 are thus dual to algebras of type 7. The first papers
on coalgebras (see [33], [31]) were motivated by this theoretical interest in
dualizing concepts and theorems from universal algebra, and were largely
forgotten. However, in the last decade coalgebras have become important
as the fundamental structures needed to model state-based systems and
state-based dynamics, and universal coalgebra has emerged as a general
theory of such systems. The connection between algebras and coalgebras
also provides a way to connect static data-oriented systems with dynamical
behaviour-oriented systems. This duality has been informally known for a
long time, with algebras used to describe data types and coalgebras used
to describe abstract systems or machines.

In order to model dynamic state-based systems, we need to generalize
the original definition of a co-algebra to allow other codomains than just
copowers of A. For instance, the codomain might be a product of the form
A x ¥ where ¥ is an input or output language of the machine. In general,
we use some functor F' to describe this structure, and consider mappings
f: A F(A). This leads to the definition of an F-coalgebra, for a functor
F, as a structure with a base set A together with one or more mappings from
A to F(A). There is an algebraic dual of this concept too: an F-algebra is
a set A with one or more mappings from F'(A) to A.

It is evident that duality plays a key role in the study of algebras and
coalgebras, and a main goal of this book is to explain this duality in a
clear and accessible way. We have already mentioned the use of a functor
in defining the general version of F-algebras and F-coalgebras, and indeed
category theory plays a key role in formalizing the duality we need. For
this reason we introduce categorical notions early in our development of
the theory. Let C be a category, and let F' : C — C be a functor on this
category. An F-coalgebra over the category C is defined as an object A
of C equipped with a morphism a4 : A - F(A). When C is a category
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of sets, the morphism a4 is a mapping from the set A to the set F(A).
For a special set-valued functor F' the mapping a4 can encode the indexed
or non-indexed set of fundamental co-operations of a coalgebra 4. Dually,
F-algebras are pairs consisting of a set A and a mapping 4 : F(A4) = A,
where 34 encodes the indexed or non-indexed set of fundamental operations
of the algebra A. In this most general sense, the concept of an F-coalgebra
generalizes that of a coalgebra of type 7, and similarly for F-algebras and
algebras of type 7. It turns out that the concept of an F-coalgebra models
many kinds of structures occurring in mathematics and computer science.
F-coalgebras over categories of algebras are also of interest in the area of
concurrency theory (see [16]).

In Chapter 1 of this book we introduce the topic of universal algebra,
beginning with algebras and operations. We describe the subalgebra, ho-
momorphic image, product and quotient constructions, and define a variety
as a class of algebras closed under the formation of subalgebras, products
and homomorphic images. We also define terms and identities, and an
equational class as a class of algebras which all satisfy a common set of
identities. The chapter culminates in Section 1.4 where we study the con-
nection between the algebraic-structural approach of varieties and the more
model-theoretical, logical approach of equational classes. The main theo-
rem here is Birkhoff’s Theorem, which tells us that the two approaches are
equivalent: this theorem says that any variety is an equational class, and
vice versa.

As a lead-in to the modelling of state-based systems, we show that any
algebra on set A with only unary fundamental operations f{},..., f4 can be
regarded as an automaton without output. The set of unary fundamental
operations forms the input alphabet of the automaton, while the set of
states is the universe set A of the algebra. A non-empty subset A’ of the
set A must be chosen as the set of final states, and one designated element
ao from the universe is used as an initial state. Then a word fA - f# is
recognized if and only if the output f7(fZ(...(f(a0))...)) is in A'.

To model automata with output we also need structures with more than
one set of objects. These are called multi-based or multi-sorted algebras.
In the last section of Chapter 1 we describe such multi-based algebras. An
important example of this structure is a clone, which has a disjoint set of
objects for each n > 1. For example, the collection of all finitary operations
on a base set A forms a clone, with the set O,,(A) for each n > 1 consisting
of all the n-ary operations on A.
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The main purpose of Chapter 2 is to illustrate through a number of
examples how the notion of coalgebra models a large class of state-based
systems. In general, state-based systems satisfy the following criteria:

— the behaviour of the system depends on internal states, which are not
visible to the user of the system;

— the system is reactive, interacts with its environment, and is not nec-
essarily terminating;

— the interaction is performed by a set of operations.

For each example presented of a state-based system, we show how it may
be regarded as a coalgebra, how to express structure-preserving maps or
homomorphisms between such systems as coalgebra homomorphisms, and
how to model behavioural equivalence of states.

As noted above, our general approach to the duality of algebras and
coalgebras is based on categorical ideas, and in Chapter 3 we give a brief
introduction to and overview of category theory. But our approach is lim-
ited mainly to the category of sets: we consider the interpretation of each
abstractly defined categorical notion in the category of sets, and we con-
sider mainly what are called concrete categories, where the objects are sets
equipped with some structure such as operations, co-operations, relations,
or topologies.

In Chapter 4 we define F-coalgebras and their homomorphisms, and
study the properties of the category of all F-coalgebras. The main ques-
tion is the categorical one of whether there exist coproducts, coequalizers
and pushouts, or colimits generally, in this category. It turns out that some
properties, dual to well-known and easy to prove results in universal alge-
bra, work for F-coalgebras only if we restrict to special kinds of functors F'.
These are what are called standard functors, functors which preserve weak
pullbacks. In this chapter we also define the dual to a variety of algebras,
the concept of a covariety of coalgebras, as a class of F-coalgebras which is
closed under the formation of homomorphic images, subcoalgebras and co-
products. We also introduce the concept of a bisimulation, a relation which
models behavioural equivalence of state-based systems; this is a concept
not studied in universal algebra.

Noting that coalgebras are dual to algebras, and having generalized coal-
gebras to F-coalgebras in Chapter 4, we turn in Chapter 5 to the question of
the dual of F-coalgebras. Here we construct F-algebras as generalizations
of algebras of type 7.

Chapter 6 takes a further step in abstraction to a single structure which



Introduction 5

encompasses both F-algebras and F-coalgebras. This can be done by using
two functors F) and F5, instead of a single functor F'. A functorial system or
(Fy, Fy)-structure ((F1, Fz)-coalgebra), for functors F; and F3, consists of
a set A and mappings f : Fi(A) — F3(A). This expresses both F-algebras,
by taking F; = F and F5 to be the identity functor, and F-coalgebras, when
F, = F and F is the identity functor. But this concept also models other
interesting algebraic structures as well, such as power algebras (also called
hyperstructures) and power coalgebras, and tree automata. This structure
thus allows us to unify results from the two different areas of algebra and
theoretical computer science. We also investigate in this chapter conditions
on F} and F; under which limits and colimits in the category of all (Fy, F)-
coalgebras exist.

A key concept in the study of algebras of type 7 is the free algebra of
the type over a countably infinite set of generators. This algebra has a
universal mapping property, expressed in categorical terms by the fact that
it is an initial object in the category Alg(7) of all algebras of type 7. In
Chapter 7 we consider the dual concept in the category of F-coalgebras, a
terminal F-coalgebra. Elements of a terminal coalgebra can be viewed as
interpreting the behaviour of state-based systems.

As mentioned in Chapter 1, a key theorem in universal algebra is
Birkhofl’s result that varieties are the same as equational classes. The vari-
etal approach to coalgebras is discussed here in Chapter 4, and in Chapter
8 we study the equational approach. We introduce coequations (as patterns
of behaviour) and prove a dual of Birkhoff’s Theorem.

To consider the dual of terms and identities, we turn in Chapter 9 to the
study of coalgebras of type 7, as F-coalgebras for a particular functor F. In
this setting we can define coterms, coidentities and covarieties, analogous
to the terms, identities and varieties of universal algebra. The set of all
coterms of type 7 induces a clone of co-operations.

The study of clones is another important feature of this work. Clones
occur in universal algebra as clones of term operations or polynomial opera-
tions of an algebra or variety. Also well known is the clone of all operations
on a base set A, and its lattice of subclones. When A has cardinality three
or more, this lattice is uncountably infinite. The remaining case, when A is
a two-element set, is usually called the Boolean case, and the countably infi-
nite lattice of all Boolean clones has been well-studied, particularly by Post.
In Chapter 10 we compare Post’s lattice of all Boolean clones of operations
with the lattice of all clones of co-operations defined on a two-element set,
which turns out to be a finite lattice.



