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PREFACE

It is clear that the concept of the algorithm fully deserves its place among the supreme
accomplishments of human thought. There, in its rightful place with such ideas as cal-
culus and quantum mechanics, the algorithm can be celebrated for its continuing con-
tribution to the advancement of humanity. Although the idea of the algorithm is old, the
twentieth-century development of extremely fast electronic algorithm execution ma-
chines has catapulted algorithms into the center of our technological culture. The In-
ternet, digital communications, video games, and physical simulation—all are founded
on algorithms, and I believe that all educated women and men should be familiar with
the basic ideas of algorithmic thought.

Engineers and scientists have long recognized the potential of algorithms to model
the physical universe, and thus also to model and even control technological artifacts.
With algorithms we can determine the details of the fluid flow about the bow of a ship, or
the distribution of neutrons within a nuclear reactor. We can determine the stress on each
beam in a bridge, and we can control the performance of a car engine. The algorithms
to do such things can be developed without computers, but actually carrying out the
detailed computations to execute these algorithms is mind-numbing and, in the end,
far beyond human endurance. But the mid-twentieth century invention of electronic
algorithm execution machines—now simply called computers—provided us with an
escape from the trap of tedium, and then algorithms became an immensely powerful
analysis tool.

All engineers will have to assess algorithms as part of their work, and many will
actually develop them. But often these algorithms will be created inside special-purpose
tools and expressed in special-purpose languages, ranging from the strange language of
spreadsheets to the lisp extension language of computer-aided design tools; they might
be written in the matrix-oriented languages of SciLab or Matlab, or in an object-oriented
scripting language like Python. Often these algorithms will be designed to glue together
other, already existing algorithmic tools, and so reforge those tools for a new purpose.
Most of these algorithms will be intended to solve an immediate problem quickly and
easily, and the tool will be selected with that impending priority in mind. But even
here there is a need to create algorithms—to understand the fundamental notions of
sequence, iteration, and selection, to understand the dynamic data transformations that
algorithms carry out, to understand different ways of organizing data, and to have some
sense of what algorithms can do, and what they can’t. Because we rely on these pro-
grammable tools, we must have some understanding, more deep than superficial, of
how they work and how they break.

Beyond this practical utility of getting a computer to solve a problem, learning
to think about a problem algorithmically will give you more power over that problem.
Even if you don’t, in the end, solve a problem by writing a computer code, having an
algorithmic perspective on it gives you another way to appreciate the issues involved.
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PREFACE

Amazingly, the computer was designed to solve problems that its creators never
envisioned and the computer will let you solve problems that no one else has ever even
thought of. But causing a computer to carry out this feat requires creating algorithms
and implementing them in a way that the computer can interpret. The implementing is
comparatively trivial; the creating is very hard. But the ability to create algorithms is
important, and the need to do so is inevitable: We have the power of a programmable
execution machine at our fingertips. How can we choose not to use it?

I'want you to develop a facility for algorithmic thought as one approach among many
to engineering and scientific problems; I want you to think of problems in terms of the
steps that can be scripted and then carried out to reach a solution. Once you can do
that, the computer will take care of the boring part of actually performing those steps.
This is therefore not a book of algorithms, but rather a book to make you think about
algorithms.

This book is an introduction to the idea of the algorithm, and an introduction to
creating them. It is aimed at beginning university students in engineering and the sci-
ences. It is not particularly aimed at computer scientists. Although computer science
students can certainly learn from this text, a computer science curriculum tradition-
ally begins with a course on programming and builds on it through a whole series of
courses that develop particular classical algorithms and data organization techniques.
A computer science curriculum seldom focuses on calculus-based problems and basic
physical mechanics.

This text, in contrast, is intended to support an engineering curriculum that con-
tains only one first- or second-year course whose focus is primarily on algorithms and
programming. Such a curriculum will build on this course by using simulation and
computer-aided engineering design tools in later classes, classes whose primary focus
is engineering and science rather than computing.

This text invites your exploration of ideas and provides a contemplative means
to stimulate your thinking. Beyond this first introduction, you must commit to bringing
algorithms to your other work, so that you can practice and build on the ideas introduced
here. In our own curriculum at the University of Michigan, we have used this text to
support a first-year course in algorithms and programming for engineers, and then built
continuously on computing within later technical courses.

In order to think about algorithms, we must have problems to solve. First- and
second-year students in engineering are concurrently taking calculus, physics, chem-
istry, and biology. These simultaneous studies provide us with a ready source of prob-
lems for which to build algorithmic treatments, so I will select from this fountain such
problems as strike me both interesting and, perhaps with some effort, understandable
to first-year university students. There are many wonderful algorithms that students of
engineering and the sciences should learn, but this text is not the place to learn them all.

Throughout the text we will discuss alternatives. I will write many pieces of code
more than once, and discuss the trade-offs and aesthetic issues involved in the various
versions. You should similarly do so in your own creation of algorithms. I realize that
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you are reluctant to consider alternative ways of accomplishing a goal. After all, once
something works, why look for another way, especially when you have a Russian exam
tomorrow? But there is more to accomplishing a goal than simply obtaining something
that works. We should consider aesthetics, flexibility, our certainty of correctness, ease
of use, and robustness.

At the end of each section you will find questions; some of these are simple re-
view questions, asking you to recall something of the recently read text. But some are
intended to make you think about what you just read; indeed, some of these have no
right answer, but ask you to consider or comment on choices. At the end of each chapter
you will find projects, of varying length and complexity; most of these projects ask you
to take up your keyboard and create codes. There is no better way to understand and
appreciate algorithms than to write them, and execute them on a computer. And there
is no better way to understand a problem than to develop an algorithm to solve it.

As you approach these end-of-chapter projects, you will note that often I don’t
lay out all the details; frequently the projects ask you to write functions or procedures,
but do not specify an entire code. I want you to think about each assignment, formulate
questions about it, and thereby take some intellectual ownership of it. I also want you
to develop some means of testing your code. Further, I don’t know how your instructor
will prefer to work, so I try not to restrict her with details that may not be appropriate.'

THE EXPRESSION OF ALGORITHMS

When developing an algorithm, we must have some way to write it down. A few texts
introduce only pseudocode, which is some means of algorithm expression intended only
to be written and read by humans. The weakness of this approach is that it does not allow
the algorithm to be tested on a real computer. Some other texts introduce pseudocode
alongside a real programming language that can be used to control a real computer. 1
do this, but I use pseudocode sparingly, and use it less and less as the text progresses.
My expectation is that you will become more proficient at simply reading code written
in a real programming language.

Many practicing engineers create algorithms by first sketching out their ideas in
a computer language, but they leave out details so as to concentrate on the big issues
first. This is rather like making a rough draft of a story without worrying about the
spelling or correctness of grammar, but focusing instead on the flow of plot and char-
acter. Despite this common practice, some textbook authors insist on scoping out all
algorithms in pseudocode before writing them in a real language. I used to follow this
practice, but after teaching algorithms and programming for a few years, I have come to
see this “translation of pseudocode to real language™ as counterproductive, especially
for beginners. It is rather like requiring the rough draft in Latin, and then translating
it into English to get the grammar right. Few students new to programming find their
logic errors in pseudocode. They find their errors when testing their code. So I think it is

"In my own class I often give students a handout specifying the function and procedure interfaces quite
precisely, because 1 often check assignments by linking their compiled code to my own test harness code.
But other instructors will have their own preferences.
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important for students to get their thoughts promptly into real code and executing on
a computer. So I deemphasize pseudocode. My own observation is that students will
naturally use this technique of code and test, no matter how much I might insist they
do otherwise. Upon reflection, they are right to do so.

When developing algorithms, it is important to have a way to get those algorithms
executed on that unimaginative, tyrannical hunk of doped silicon affectionately known
as a computer’s central processing unit. To do so, we must express our algorithms in
a real programming language, not pseudocode. In this text I use C++. There are many
reasons for this choice, not all of them objective. C++ is a good intermediate-level
language, and is widely used. It is easy to find the software tools needed to use C++ on
most any computer you may have. And it is easy to find, just down the hall, a member
of the C++ literati whose brain you can pick at 1 A.m. in exchange for a slice of pizza
and a coke.

The downside of C++ is that it can take years to fully know and understand the
whole language. Fortunately, the language can be used, and used well, without know-
ing all there is to know about it. All the C++ that I will use in this book is presented
in this book. But C++ is a huge language; it is fully, if incomprehensibly, described in
ISO/IEC 14882, the 776-page tome that defines the language. It is also fully and some-
what more delicately described in the 1,040 pages of The C++ Programming Language
by Bjarne Stroustrup, who is primarily responsible for creating the language. But I have
no reason to create another 800-page book to bind between these covers. Indeed, to do
so in the name of fully describing the language would be a confusing distraction from
my primary aim. So I introduce only as much of the language as I need to describe the
fundamental algorithmic and data organization ideas that I want to present.

ORGANIZATION OF THE TEXT

If you try to view this as simply a programming language text, and mistakenly compare
it to others of that breed, you will note some unusual ordering of material. In Chapter 1,
I introduce the idea of an algorithm as a set of steps that transform data from input to
output, and I also give a whirlwind introduction to the organization of algorithms, and
how a static description of an algorithm must control its later dynamic execution. The
next three chapters cover the three pillars of algorithms: sequence (Chapter 2), iteration
(Chapter 3), and selection (Chapter 4).

The most unusual feature here is the coverage of iteration before selection. Selec-
tion is often claimed to be simpler in concept than iteration, so conventional wisdom
would mistakenly assert that I should discuss selection first. But to do so is to post-
pone the time when we can begin to take on really interesting problems and algorithms.
Without iteration we can engage only in glorified formula evaluation exercises. My aim
is to get you into the good stuff early, so you have time to consider it, to practice it, and
to appreciate it.

Too much of the early engineering curriculum already presents a false picture of
engineering as the practice of plugging numbers into formulas. Engineering is about
creative design within the constraints imposed by nature, need, and society. Significant
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algorithms allow us to find creative solutions to engineering problems, but significant
algorithms always exploit iteration.

Just as Chapters 2 through 4 describe the key concepts in organizing algorithms,
Chapters 5 through 7 describe the organization of data. Part of Chapter 5 more fully de-
scribes the fundamental scalar data types of C++, a topic that would be explored earlier
in a language-oriented text. But we really did not need that information earlier; earlier
it would have been stuff to plow through only because we need it later, and it would
not help us understand harder, more central concepts. Better, I think, to discuss such
matters after you have the more difficult ideas of algorithmic organization fermenting
in your thoughts.

The level of sophistication required to fully comprehend the examples and ex-
ercises varies. Some are quite straightforward, and some might greatly stretch your
intellect. Example problems often involve discretization, time stepping of differential
equations, solution of nonlinear equations, estimation of integrals, or the solution of a
system of linear equations. We have taught all of this material in our first-year course
at the University of Michigan, although we have never taught all of it in a single term.
I expect your instructor will select material appropriate for your particular course.

Chapter 8 provides some introduction to the limitations of computers and of algo-
rithms. Because algorithms must be executed on a finite computer with limited memory,
there are limits to the accuracy and range of information that might be represented on the
computer. Chapter 8 contains an extensive discussion of the representation of floating
point numbers and floating point arithmetic. Although this material is easily understood
with only an understanding of numbers and algebra, it does take some time to appreciate,
and might easily be omitted from a course using the text. Chapter 8 also briefly discusses
discretization and truncation errors, and estimating the time complexity of algorithms.

‘Two appendices provide a brief overview of some of the key C++ language con-
structs and library facilities used in the book. They also contain a few language con-
structs that were not used in the main body of the text. I encourage you to skim these
appendices early on, and to then refer to them often. There are useful details to be found
in them, but these are details that would be outside the main stream of the text, or else
are scattered throughout the text yet gathered more conveniently together in the ap-
pendices. Think of the appendices not as optional supplements to your reading, but as
critical material that needs to be read asynchronously.
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chatter to a manuscript. My editor at Wiley, Joe Hayton, guided this project through
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ALGORITHMS AND ENGINEERING

I think that algorithms are important. I think you should know how to make your com-
puter solve your problems, rather than the problems that some distant programmer
thinks you should solve. I also think algorithms are insanely fun to create. When we
create an algorithm, we start with a problem to solve and travel through the whole pro-
cess of engineering: We design a solution, we implement it, we test it, we refine it, and
we seek to make it beautiful. I hope that you see this beauty while reading this text.

James Paul Holloway
Chelsea, Michigan
December 31, 2002
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