to

Introduction

INTRODUCTION TO
ENGINEERING PROGRAMMING

Solving Problems with Algorithms

JAMES PAUL HOLLOWAY

John Wiley & Sons, Inc.

ACQUISITIONS EDITOR Joseph Hayton

SENIOR MARKETING MANAGER Katherine Hepburn
SENIOR PRODUCTION EDITOR Ken Santor
SENIOR DESIGNER Kevin Murphy
ILLUSTRATION EDITOR Sigmund Malinowski
COVER IMAGE Courtesy Motawi Tileworks, Ann Arbor, MI

This book was set in Times Roman by Publication Services and printed and bound by R.R. Donnelley
Crawfordsville. The cover was printed by Phoenix Color Corporation.

This book is printed on acid-free paper. =

Copyright © 2004 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400,
fax (508) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ, 07030, (201) 748-6011, fax
(201) 748-6008, e-mail: PERMREQ@WILEY.COM. To order books or for customer service please call
1-800-CALL WILEY (225-5945).

This document was composed using vim and emacs, and typeset using IATEX 2,.. IATEX sources were
first preprocessed with cmarktex to extract C++ code for testing and compilation, and to provide cross
references between C++ code and the text. Cmarktex is written in Eiffel, and was compiled with the
SmallEiffel compiler. All named C++ code was originally compiled and tested under Linux using the
Gnu-based C++ compiler, g++ 2.96, distributed by RedHat and by Mandrake; most of the code was
also compiled with the Sun Workshop 6 C++ compiler, version 5.2, under Solaris. The code was later
compiled under Windows 2000 and Linux using the Gnu g++ compiler version 3.1.

[SBN-0-471-20215-0
Printed in the United States of America

10987654321

PREFACE

It is clear that the concept of the algorithm fully deserves its place among the supreme
accomplishments of human thought. There, in its rightful place with such ideas as cal-
culus and quantum mechanics, the algorithm can be celebrated for its continuing con-
tribution to the advancement of humanity. Although the idea of the algorithm is old, the
twentieth-century development of extremely fast electronic algorithm execution ma-
chines has catapulted algorithms into the center of our technological culture. The In-
ternet, digital communications, video games, and physical simulation—all are founded
on algorithms, and I believe that all educated women and men should be familiar with
the basic ideas of algorithmic thought.

Engineers and scientists have long recognized the potential of algorithms to model
the physical universe, and thus also to model and even control technological artifacts.
With algorithms we can determine the details of the fluid flow about the bow of a ship, or
the distribution of neutrons within a nuclear reactor. We can determine the stress on each
beam in a bridge, and we can control the performance of a car engine. The algorithms
to do such things can be developed without computers, but actually carrying out the
detailed computations to execute these algorithms is mind-numbing and, in the end,
far beyond human endurance. But the mid-twentieth century invention of electronic
algorithm execution machines—now simply called computers—provided us with an
escape from the trap of tedium, and then algorithms became an immensely powerful
analysis tool.

All engineers will have to assess algorithms as part of their work, and many will
actually develop them. But often these algorithms will be created inside special-purpose
tools and expressed in special-purpose languages, ranging from the strange language of
spreadsheets to the lisp extension language of computer-aided design tools; they might
be written in the matrix-oriented languages of SciLab or Matlab, or in an object-oriented
scripting language like Python. Often these algorithms will be designed to glue together
other, already existing algorithmic tools, and so reforge those tools for a new purpose.
Most of these algorithms will be intended to solve an immediate problem quickly and
easily, and the tool will be selected with that impending priority in mind. But even
here there is a need to create algorithms—to understand the fundamental notions of
sequence, iteration, and selection, to understand the dynamic data transformations that
algorithms carry out, to understand different ways of organizing data, and to have some
sense of what algorithms can do, and what they can’t. Because we rely on these pro-
grammable tools, we must have some understanding, more deep than superficial, of
how they work and how they break.

Beyond this practical utility of getting a computer to solve a problem, learning
to think about a problem algorithmically will give you more power over that problem.
Even if you don’t, in the end, solve a problem by writing a computer code, having an
algorithmic perspective on it gives you another way to appreciate the issues involved.

vii

viii

THIS BOOK

PREFACE

Amazingly, the computer was designed to solve problems that its creators never
envisioned and the computer will let you solve problems that no one else has ever even
thought of. But causing a computer to carry out this feat requires creating algorithms
and implementing them in a way that the computer can interpret. The implementing is
comparatively trivial; the creating is very hard. But the ability to create algorithms is
important, and the need to do so is inevitable: We have the power of a programmable
execution machine at our fingertips. How can we choose not to use it?

I'want you to develop a facility for algorithmic thought as one approach among many
to engineering and scientific problems; I want you to think of problems in terms of the
steps that can be scripted and then carried out to reach a solution. Once you can do
that, the computer will take care of the boring part of actually performing those steps.
This is therefore not a book of algorithms, but rather a book to make you think about
algorithms.

This book is an introduction to the idea of the algorithm, and an introduction to
creating them. It is aimed at beginning university students in engineering and the sci-
ences. It is not particularly aimed at computer scientists. Although computer science
students can certainly learn from this text, a computer science curriculum tradition-
ally begins with a course on programming and builds on it through a whole series of
courses that develop particular classical algorithms and data organization techniques.
A computer science curriculum seldom focuses on calculus-based problems and basic
physical mechanics.

This text, in contrast, is intended to support an engineering curriculum that con-
tains only one first- or second-year course whose focus is primarily on algorithms and
programming. Such a curriculum will build on this course by using simulation and
computer-aided engineering design tools in later classes, classes whose primary focus
is engineering and science rather than computing.

This text invites your exploration of ideas and provides a contemplative means
to stimulate your thinking. Beyond this first introduction, you must commit to bringing
algorithms to your other work, so that you can practice and build on the ideas introduced
here. In our own curriculum at the University of Michigan, we have used this text to
support a first-year course in algorithms and programming for engineers, and then built
continuously on computing within later technical courses.

In order to think about algorithms, we must have problems to solve. First- and
second-year students in engineering are concurrently taking calculus, physics, chem-
istry, and biology. These simultaneous studies provide us with a ready source of prob-
lems for which to build algorithmic treatments, so I will select from this fountain such
problems as strike me both interesting and, perhaps with some effort, understandable
to first-year university students. There are many wonderful algorithms that students of
engineering and the sciences should learn, but this text is not the place to learn them all.

Throughout the text we will discuss alternatives. I will write many pieces of code
more than once, and discuss the trade-offs and aesthetic issues involved in the various
versions. You should similarly do so in your own creation of algorithms. I realize that

PREFACE ix

you are reluctant to consider alternative ways of accomplishing a goal. After all, once
something works, why look for another way, especially when you have a Russian exam
tomorrow? But there is more to accomplishing a goal than simply obtaining something
that works. We should consider aesthetics, flexibility, our certainty of correctness, ease
of use, and robustness.

At the end of each section you will find questions; some of these are simple re-
view questions, asking you to recall something of the recently read text. But some are
intended to make you think about what you just read; indeed, some of these have no
right answer, but ask you to consider or comment on choices. At the end of each chapter
you will find projects, of varying length and complexity; most of these projects ask you
to take up your keyboard and create codes. There is no better way to understand and
appreciate algorithms than to write them, and execute them on a computer. And there
is no better way to understand a problem than to develop an algorithm to solve it.

As you approach these end-of-chapter projects, you will note that often I don’t
lay out all the details; frequently the projects ask you to write functions or procedures,
but do not specify an entire code. I want you to think about each assignment, formulate
questions about it, and thereby take some intellectual ownership of it. I also want you
to develop some means of testing your code. Further, I don’t know how your instructor
will prefer to work, so I try not to restrict her with details that may not be appropriate.'

THE EXPRESSION OF ALGORITHMS

When developing an algorithm, we must have some way to write it down. A few texts
introduce only pseudocode, which is some means of algorithm expression intended only
to be written and read by humans. The weakness of this approach is that it does not allow
the algorithm to be tested on a real computer. Some other texts introduce pseudocode
alongside a real programming language that can be used to control a real computer. 1
do this, but I use pseudocode sparingly, and use it less and less as the text progresses.
My expectation is that you will become more proficient at simply reading code written
in a real programming language.

Many practicing engineers create algorithms by first sketching out their ideas in
a computer language, but they leave out details so as to concentrate on the big issues
first. This is rather like making a rough draft of a story without worrying about the
spelling or correctness of grammar, but focusing instead on the flow of plot and char-
acter. Despite this common practice, some textbook authors insist on scoping out all
algorithms in pseudocode before writing them in a real language. I used to follow this
practice, but after teaching algorithms and programming for a few years, I have come to
see this “translation of pseudocode to real language™ as counterproductive, especially
for beginners. It is rather like requiring the rough draft in Latin, and then translating
it into English to get the grammar right. Few students new to programming find their
logic errors in pseudocode. They find their errors when testing their code. So I think it is

"In my own class I often give students a handout specifying the function and procedure interfaces quite
precisely, because 1 often check assignments by linking their compiled code to my own test harness code.
But other instructors will have their own preferences.

PREFACE

important for students to get their thoughts promptly into real code and executing on
a computer. So I deemphasize pseudocode. My own observation is that students will
naturally use this technique of code and test, no matter how much I might insist they
do otherwise. Upon reflection, they are right to do so.

When developing algorithms, it is important to have a way to get those algorithms
executed on that unimaginative, tyrannical hunk of doped silicon affectionately known
as a computer’s central processing unit. To do so, we must express our algorithms in
a real programming language, not pseudocode. In this text I use C++. There are many
reasons for this choice, not all of them objective. C++ is a good intermediate-level
language, and is widely used. It is easy to find the software tools needed to use C++ on
most any computer you may have. And it is easy to find, just down the hall, a member
of the C++ literati whose brain you can pick at 1 A.m. in exchange for a slice of pizza
and a coke.

The downside of C++ is that it can take years to fully know and understand the
whole language. Fortunately, the language can be used, and used well, without know-
ing all there is to know about it. All the C++ that I will use in this book is presented
in this book. But C++ is a huge language; it is fully, if incomprehensibly, described in
ISO/IEC 14882, the 776-page tome that defines the language. It is also fully and some-
what more delicately described in the 1,040 pages of The C++ Programming Language
by Bjarne Stroustrup, who is primarily responsible for creating the language. But I have
no reason to create another 800-page book to bind between these covers. Indeed, to do
so in the name of fully describing the language would be a confusing distraction from
my primary aim. So I introduce only as much of the language as I need to describe the
fundamental algorithmic and data organization ideas that I want to present.

ORGANIZATION OF THE TEXT

If you try to view this as simply a programming language text, and mistakenly compare
it to others of that breed, you will note some unusual ordering of material. In Chapter 1,
I introduce the idea of an algorithm as a set of steps that transform data from input to
output, and I also give a whirlwind introduction to the organization of algorithms, and
how a static description of an algorithm must control its later dynamic execution. The
next three chapters cover the three pillars of algorithms: sequence (Chapter 2), iteration
(Chapter 3), and selection (Chapter 4).

The most unusual feature here is the coverage of iteration before selection. Selec-
tion is often claimed to be simpler in concept than iteration, so conventional wisdom
would mistakenly assert that I should discuss selection first. But to do so is to post-
pone the time when we can begin to take on really interesting problems and algorithms.
Without iteration we can engage only in glorified formula evaluation exercises. My aim
is to get you into the good stuff early, so you have time to consider it, to practice it, and
to appreciate it.

Too much of the early engineering curriculum already presents a false picture of
engineering as the practice of plugging numbers into formulas. Engineering is about
creative design within the constraints imposed by nature, need, and society. Significant

PREFACE xi

algorithms allow us to find creative solutions to engineering problems, but significant
algorithms always exploit iteration.

Just as Chapters 2 through 4 describe the key concepts in organizing algorithms,
Chapters 5 through 7 describe the organization of data. Part of Chapter 5 more fully de-
scribes the fundamental scalar data types of C++, a topic that would be explored earlier
in a language-oriented text. But we really did not need that information earlier; earlier
it would have been stuff to plow through only because we need it later, and it would
not help us understand harder, more central concepts. Better, I think, to discuss such
matters after you have the more difficult ideas of algorithmic organization fermenting
in your thoughts.

The level of sophistication required to fully comprehend the examples and ex-
ercises varies. Some are quite straightforward, and some might greatly stretch your
intellect. Example problems often involve discretization, time stepping of differential
equations, solution of nonlinear equations, estimation of integrals, or the solution of a
system of linear equations. We have taught all of this material in our first-year course
at the University of Michigan, although we have never taught all of it in a single term.
I expect your instructor will select material appropriate for your particular course.

Chapter 8 provides some introduction to the limitations of computers and of algo-
rithms. Because algorithms must be executed on a finite computer with limited memory,
there are limits to the accuracy and range of information that might be represented on the
computer. Chapter 8 contains an extensive discussion of the representation of floating
point numbers and floating point arithmetic. Although this material is easily understood
with only an understanding of numbers and algebra, it does take some time to appreciate,
and might easily be omitted from a course using the text. Chapter 8 also briefly discusses
discretization and truncation errors, and estimating the time complexity of algorithms.

‘Two appendices provide a brief overview of some of the key C++ language con-
structs and library facilities used in the book. They also contain a few language con-
structs that were not used in the main body of the text. I encourage you to skim these
appendices early on, and to then refer to them often. There are useful details to be found
in them, but these are details that would be outside the main stream of the text, or else
are scattered throughout the text yet gathered more conveniently together in the ap-
pendices. Think of the appendices not as optional supplements to your reading, but as
critical material that needs to be read asynchronously.

ACKNOWLEDGMENTS

The choices made in creating this text are mine, but they have been influenced by
conversations and a long association with many others. I must especially acknowledge
the contributions of my fellow Engineering 101 instructors, especially Robert Beck,
Alex Bielajew, and Kenneth G. Powell. I must also thank the many graduate student
teaching assistants who have worked on the course, most especially Dan Osborne. Dan
was born to teach, and has probably had more influence on this text than any other
colleague.

I very much appreciate the support that I received in creating this text. Annie
Borland from John Wiley & Sons was the key to taking this project from idle hallway

xii

PREFACE

chatter to a manuscript. My editor at Wiley, Joe Hayton, guided this project through
several refinements, and was never foo impatient, even though I was always late. My
copy editor, Patricia Brecht, provided many excellent suggestions that appear in the
final text, and was very polite in correcting my embarrassingly consistent confusion
over “its” and “it’s”. I must also thank my department chairs, Gary Was and John C. Lee,
who never begrudged the time I spent away from the department working on this course
and this text. :

ALGORITHMS AND ENGINEERING

I think that algorithms are important. I think you should know how to make your com-
puter solve your problems, rather than the problems that some distant programmer
thinks you should solve. I also think algorithms are insanely fun to create. When we
create an algorithm, we start with a problem to solve and travel through the whole pro-
cess of engineering: We design a solution, we implement it, we test it, we refine it, and
we seek to make it beautiful. I hope that you see this beauty while reading this text.

James Paul Holloway
Chelsea, Michigan
December 31, 2002

CONTENTS

PREFACE

LIST OF CODES
CHAPTER 1 INTRODUCTION

Algorithms

1.1.1 The Calling Environment

1.1.2 Two Multiplication Algorithms
Dynamic Control of Execution
Computers and Programming Languages
Algorithms for Engineers

Why Should You Keep Reading?
Projects

CHAPTER 2 SEQUENCE

2.1
2.2

2.3

24

25

2.6
2.7
2.8
29

Expressing Algorithms

Humble Beginnings

2.2.1 Statements and Sequence Points
2.2.2 Scaffold

2.2.3 Compilation

2.2.4 Analysis and Improvement
Expressions

2.3.1 Identifiers and Assignment
Some Example Codes

2.4.1 Physics on the Computer
2.4.2 Resistance in Parallel
2.4.3 Manipulating Time

2.4.4 Correctness and Defects
Decomposition

2.5.1 Library Functions
Defining Functions

Procedures and Side Effects
Sequencing and Side Effects
Input and Output Functions

2.9.1 Input and Output Streams
2.9.2 Redirection

2.9.3 Files

Projects

17

17
18
20
22
24
25
28
33
37
37
38
40
42
47
48
55
61
67
69
69
12
13
77

Xiii

Xiv

CONTENTS

CHAPTER 3 ITERATION

3.1
3.2
3.3
34
35
3.6
3.7

3.8
39
3.10
3.11

Repetition

Relational and Logical Operators
A Common Example

Loop Invariants

Ordering Work in a Loop
Iterative Solution of Equations
Time-Stepping

3.7.1 A Bit of Calculus

On the Structure of Iteration
Slicing

The Area under a Curve

An Adaptive Area Algorithm
Projects

CHAPTER 4 SELECTION

4.1
4.2
43
4.4
4.5
4.6
4.7

Selecting a Selection

So What Day Is Tomorrow?
Selection Combined with Iteration
Bisection

A Design Exercise

Recursion

A Selection Idiom

Projects

CHAPTER 5 DEALING WITH DATA

5.1
5.2

5.3

54
5D

5.6

Encoding and Types

Numeric Types Revisited
5.2.1 Integer Types

5.2.2 Floating Point Types
5.2.3 Type Conversions
Constants and Aliases

5.3.1 Making Data Constant
5.3.2 References

Scope and Lifetime

Data Objects

5.5.1 The String Class

5.5.2 Files

Generic Routines and Generic Types
Projects

CHAPTER 6 ARRAY SEMANTICS

6.1

6.2
6.3

Array Semantics with Strings

6.1.1 Substrings

Interfaces to Routines Using Arrays
More Complex Indexing

80

80
83
88
93
97
102
114
121
122
126
132
139
142

146

146
148
156
160
164
171
176
180

183

183
186
186
190
190
192
193
194
197
202
204
209
215
221

223

223
227
228
234

6.4
6.5
6.6
6.7
6.8

6.9

Vectors

Sorting by Merging

Smoothing

Matrix-Vector Multiplication
Solution of Linear Systems

6.8.1 General Systems of Equations
6.8.2 Gaussian Elimination

Native Arrays, Pointers, and the Command Line
6.9.1 Pointers

6.9.2 The Command Line

6.9.3 The New Operator

Projects

CHAPTER 7 AGGREGATE SEMANTICS

=
7.2
T:3

7.4

7.5
7.6

Packages of Related Data
Structures and Classes
Methods

7.3.1 Images

7.3.2 Image Files

Lines and Plotting

7.4.1 Line Drawing

7.4.2 Bresenham’s Algorithm
Gravity at Work

Constructors, Destructors, and a Matrix Class
Projects

CHAPTER 8 FINITE SPACE AND TIME

8.1

8.2

8.3
8.4
8.5

Encoding Integers

8.1.1 Nonnegative Integers

8.1.2 Integer Addition

8.1.3 Signed Integers

IEEE Floating Point

8.2.1 Error in Floating Point Representation
8.2.2 Floating Point Operations and the Machine Epsilon
8.2.3 The IEEE Floating Point Formats

8.2.4 Errors in Floating Point Operations
8.2.5 Comparison of Floating Point Numbers
Truncation and Discretization Errors

Speed

Computers in Engineering

Projects

APPENDIX A A BRIEF C++ LANGUAGE REFERENCE

Al

Source Text Organization
A.l.1 Identifiers
A.1.2 Keywords

CONTENTS

Xv

238
244
249
258
268
273
275
279
281
285
287
290

294

294
298
301
304
308
313
318
324
327
337
343

346

346
347
349
352
353
355
357
358
360
363
366
371
376
376

379

3479
381
381

XVvi CONTENTS

A.1.3 Literal Data 382

A.1.4 Operators, Associativity, and Precedence 384

A.1.5 Numeric-type Conversions and Static Casts 385

A2 Expressions 385
A.3 Statements 386
A.3.1 Jump Statements 386

A.3.2 Iteration 388

A.3.3 Selection 389

A.4 Functions and Procedures 392
A.5 Pointers and Native Arrays 393
A.6 Classes 394
APPENDIX B A BRIEF STANDARD LIBRARY REFERENCE 399
B.1 Math Library 399
B.2 Random Numbers 401
B.3 Functions with Character 403
B.4 Standard I/0 404
B.5 File Streams 407
B.6 Strings 411
B.7 Vector 413

INDEX 415

LIST OF CODES

CHAPTER 2 SEQUENCE

squarel.cpp 18
square2.cpp 26
square3.cpp 27
hydrogenMass.cpp 33
balll.cpp 37
parallelResistors.cpp 39
aclock.cpp 4]
ball2.cpp 42
ball3.cpp 44
indexRefraction.cpp 5
decayConstant.cpp 53
ball4.cpp 59
ball5.cpp 64
ball6.cpp 74

CHAPTER 3 ITERATION

sum.cpp 81
hiLo.cpp 84
gedl.cpp 89
gedDriver.cpp 89
ged2.cpp 92
power.cpp 96
sumNumbers.cpp 99
addEm.cpp 100
squareRootN.cpp 104
rootTesterN.cpp 105
squareRoot.cpp 109
rootTesterResidual.cpp 109
squareRootRelative.cpp 112
fallingBall.cpp 116
sum2.cpp 124
multTable.cpp 124
circleArea.cpp 130
cosArea.cpp 134

xXvii

xviii LIST OF CODES

trapArea.cpp 136
areaFun.cpp 137
adaptTrap.cpp 140

CHAPTER 4 SELECTION

tomorrow.cpp 150
daysThisMonthl.cpp 151
dayTomorrow.cpp 152
daysThisMonth2.cpp 154
ged3.cpp 157
akpower.cpp 159
bisectl.cpp 161
cosRoot.cpp 162
bisect2.cpp 163
getValidDoublel.cpp 168
getValidDouble2.cpp 169
legendrel.cpp 173
legendre2.cpp 174
legendre3.cpp 176
daysThisMonth3.cpp 178

CHAPTER 5 DEALING WITH DATA

getChars.cpp 187
integerLimits.cpp 189
orderPairDouble.cpp 195
globalConst.cpp 199
massEnergy.cpp 199
stringExample.cpp 205
stringExamplePart2.cpp 206
typeln.cpp 209
searchFor.cpp 212
badCode.cpp 215
orderPairlnt.cpp 216
orderPairString.cpp 216
orderPair.cpp 217
orderSamples.cpp 217
complex.cpp 219
sillyPair.cpp 220

CHAPTER 6 ARRAY SEMANTICS

notWill.cpp 225
upperCase.cpp 230
upperCaselest.cpp 230

upperCaseByRef.cpp 231

LIST OF CODES xix

upperCaselnPlace.cpp 232
upperCaseEffects.cpp 232
palindromel.cpp 235
palindrome2.cpp 236
palindrome3.cpp 236
vectorCreation.cpp 239
merge.cpp 244
mergetest.cpp 245
mergeSort.cpp 246
sortTest.cpp 247
threePointAverage.cpp 250
movingAverage.cpp 251
averageTlester.cpp 253
matvecDouble.cpp 261
movingAverage2.cpp 262
sliceMassMat.cpp 266
lowerTriangularSolve.cpp 269
lowerTriangularTest.cpp 270
inverseTomography.cpp 271
equationTransforms.cpp 276
gaussianElimination.cpp 278
daysThisMonth4.cpp 281
myCat.cpp 286

CHAPTER 7 AGGREGATE SEMANTICS

particleData.h 300
image.h 307
writePPM.cpp 309
pixelPlay.cpp 310
plot.cpp 313
plotSin.cpp 315
plotLine.cpp 319
plot2.cpp 322
plotLineByCols.cpp 326
moveParticles.cpp 330
gravity.cpp 331
matrix.h 341
matrixUse.cpp 342

CHAPTER 8 FINITE SPACE AND TIME

doBits.cpp 348
overflow.cpp 350
epsilon.cpp 358

BrDecay.cpp 367

