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Preface to the SI Edition

Xiv

This edition of Physical Metallurgy Principles has been adapted to incorporate the
International System of Units (Le Systeme International d'Unités or SI) throughout the
book.

LE SYSTEME INTERNATIONAL D’UNITES The United States Customary System
(USCS) of units uses FPS (foot-pound-second) units (also called English or Imperial units).
SI units are primarily the units of the MKS (meter—kilogram—-second) system. However,
CGS (centimeter—gram—second) units are often accepted as SI units, especially in textbooks.

USING SI UNITS IN THIS BOOK In this book, we have used both MKS and CGS
units. USCS units or FPS units used in the US Edition of the book have been converted to
SI units throughout the text and problems. However, in case of data sourced from hand-
books, government standards, and product manuals, it is not only extremely difficult to
convert all values to SI, it also encroaches upon the intellectual property of the source. Also,
some quantities such as the ASTM grain size number and Jominy distances are generally
computed in FPS units and would lose their relevance if converted to SI. Some data in fig-
ures, tables, examples, and references, therefore, remains in FPS units. For readers unfamil-
iar with the relationship between the FPS and the SI systems, conversion tables have been
provided inside the front and back covers of the book.

To solve problems that require the use of sourced data, the sourced values can be con-
verted from FPS units to SI units just before they are to be used in a calculation. To obtain
standardized quantities and manufacturers” data in SI units, the readers may contact the
appropriate government agencies or authorities in their countries/regions.

INSTRUCTOR RESOURCES A Printed Instructor’s Solutions Manual in SI units is avail-
able on request. An electronic version of the Instructor’s Solutions Manual, and PowerPoint
slides of the figures from the SI text are available through www.cengage.com/engineering.

The readers’ feedback on this SI Edition will be most appreciated and will help us improve
subsequent editions.

The Publishers



Preface

THE FIRST EDITION In recent years, introductory physical metallurgy textbooks
have attempted to achieve three goals: to explain basic metallurgical phenomena, to
identify the compositions and properties of commercial alloys, and to teach principles of
metal fabrication. Because all three phases are generally covered in a single course of
one or two semesters, none of them receives adequate treatment. A natural question
that arises is which of the three is most generally important to the engineering student.
In this regard, it should be pointed out that metal fabrication and alloy properties are
fields that are characteristically factual in nature. Although, strong arguments can be
presented for including these areas of study, it must still be admitted that time spent
learning large numbers of apparently unrelated facts is frequently wasted. Information
of this sort is easily forgotten and, what is more, today's alloys and methods are not
necessarily those of tomorrow. On the other hand, the theoretical approach to physical
metallurgy is premised on the belief that the properties of metals and alloys are deter-
mined by simple physical laws, and that it is not necessary to consider each alloy as a
separate entity. Recent advances in the physics and chemistry of metals have gone far
toward finding the needed interrelations.

This book is intended for use as an introductory course (of one or two semesters) in
physical metallurgy and is designed for all engineering students at the junior or senior
level. A number of chapters dealing with advanced topics, such as Chapters 10, 11, 15,
and 19 may be omitted in their entirety when the book is used for a one-semester
course. Prerequisites are college physics, chemistry, and strength of materials. An engi-
neering course in thermodynamics or physical chemistry is also considered desirable but
not essential. The approach is largely theoretical, but all major phases of metal behavior
normally found in physical metallurgy textbooks are covered. In this respect, statistical
mechanics and dislocation theory are used to explain plastic deformation and thermal
effects in metals. Vacancies are treated in some detail because their study may be used
to obtain a true appreciation for the meaning of activation energies in metals.
Deformation twinning is given considerable attention not only because this type of
deformation has become increasingly more important, but also because twinning theory
leads directly into the important subject area of martensite transformations.

On the whole, it is believed that the treatment used in this book is in harmony with
current trends toward a more fundamental approach in engineering education.

The author would like to acknowledge that the lectures of Dr. A. S. Nowick
and Dr. W. D. Robertson at the Hammond Laboratory, Yale University, were largely
instrumental in inspiring the writing of this book. The helpful suggestions from
Dr. F. N. Rhines on the subject of creep are also gratefully acknowledged.

THE SECOND EDITION The basic plan and philosophy of the original edition
are continued in this volume. The major changes in the new edition are largely the

XV
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PREFACE

result of constructive suggestions and advice by Professor Richard W. Heckel, of Drexel
University, Dean Walter S. Owen, of Northwestern University, and Professor Marvin
Metzger, of the University of Illinois. One result of these suggestions is the inclusion of
a chapter on nucleation and growth kinetics. The outline of this chapter was also
inspired by a set of class notes kindly loaned to the author by Professor Heckel. The
considerable assistance of Dr. John Kronsbein in revising and expanding Chapter 3,
Elementary Theory of Metals, is also gratefully acknowledged.

As a consequence of requests for the inclusion of topics either missing or too lightly
covered in the first edition, the new book has been increased in size by about ten per-
cent. In a broad sense, the additional material fits into two classifications. First are the
topics that have recently become significant in the field of metallurgy. The second
group consists of well-established subjects not covered in the first edition, but which,
from use of the text, were found to be needed for a more unified presentation. Among
the former subject areas are electron microscopy, fracture mechanics, superconductiv-
ity, superplasticity, dynamic recovery, dynamic strain aging, electrotransport, thermal
migration, and emissary dislocations. In the latter category belong the new chapter on
nucleation and growth kinetics and such topics as magnetism, the zone theory of alloy
phases, the five degrees of freedom of a grain boundary, the phase rule, true stress and
true strain, coring and homogenization of castings, work hardening, and diffusion in
nonisomorphic systems.

The number of problems is substantially increased over that in the original book, in
conformity with the current trend in engineering to place more emphasis on problem
solving. Problems have been written with the aim of both illustrating points covered in the
text and exposing the student to material and concepts not covered directly in the book.

The helpful assistance of Dr. John Hren, Dr. Robert T. DeHoff, Dr. Derek Dove,
Dr. Ellis Verink, and Dr. E. N. Rhines, all of the University of Florida, who either reviewed
sections of the book or gave suggestions, is acknowledged with thanks.

THE THIRD EDITION The basic philosophy underlying the original edition is
retained in the third edition. However, a number of significant improvements have
been incorporated in the third edition. The International System of Units is now
employed throughout text and problems. A chapter devoted to important non-
ferrous metal has been added. Fracture mechanics is covered in much greater depth
and breadth in a separate chapter. The treatment of solidification has been expanded
and brought up to date and includes an extensive coverage of liquid metals as well
as the Scheil equation and eutectic freezing. The section on the transmission electron
microscope has been expanded and a detailed discussion of the scanning electron
microscope has been added. Grain boundaries are now covered in a separate chapter
that includes coincident site boundaries. The subject of dislocations has been reor-
ganized and consolidated. Chapter 4 considers the geometrical aspects of dislocations
while Chapter 5 treats the relationship of dislocations to plastic deformation. The
phase diagrams in the text have been brought up to date. In the steel chapters, the
transformations of austenite to peariite, bainite, and martensite, and the tempering
of martensite have been modernized. In the deformation twinning and martensite
reactions chapter, less emphasis is placed on twinning phenomena per se while the
role that twinning can play in the plastic deformation of polycrystalline metals has
been added. In the martensite section, thermoelastic deformation and shape memory
effects are now covered.
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The authors would like to thank Professor William C. Leslie of the University of
Michigan and Professor Daniel N. Beshers of Columbia University for their extensive
and constructive suggestions concerning material that needed to be corrected or added
to the third edition.

The authors would also like to acknowledge the assistance of Professors Paul
C. Holloway and Rolf N. Hummel, University of Florida. We are also greatly indebted
to all of the following for their constructive reviews of the manuscript of the third edi-
tion: Professor William A. Jesser, University of Virginia; Professor William G. Ovens,
Rose-Hulman Institute of Technology; Professor Dale E. Wittmer, Southern Illinois
University; Professor James C. M. Li, University of Rochester; Professor Alan R. Pelton,
University of Notre Dame; and Professor Samuel J. Hruska, Purdue University.

THE FOURTH EDITION The original philosophy of the former editions has
been kept in this fourth edition. The text retains its easy-to-read format so that the
essence of the information is most successfully communicated. Recent references have
been incorporated to complement the remaining original references which provide his-
toric context. Indeed, with electronic search engines limited to more recently published
literature, identification and acknowledgment of the pioneers of the field often gets
overlooked. To increase the focus of the text, Chapters 22 and 23 were removed, with
salient portions incorporated into other chapters. As such, the book is more adaptable
for a one or two semester introductory course for juniors or seniors in materials science
and engineering. New figures were added to enhance understanding of the text.
Sections on nano-structures have been included to demonstrate the applicability of the
physical metallurgy principles to current nanotechnology trends; however, the authors
leave it to the readers to independently pursue the area more thoroughly.

The authors would like to thank the reviewers whose constructive reviews of the
third edition drove the aforementioned changes: Professor Richard B. Griffin, Texas
A & M University; Professor Dong-Joo (Daniel) Kim, Auburn University; Professor
Anthony P. Reynolds, University of South Carolina; Professor Christopher A. Schuh,
Massachusetts Institute of Technology; Professor Jiahong Zhu, Tennessee Technical
University. Special thanks to Hilda Gowans, Senior Development Editor, whose assis-
tance was invaluable throughout the revisions, to Chris Carson and the Engineering
group at Cengage Learning and to Rose Kernan who managed the production of this
new edition. We also thank Dr. Abraham Munitz for providing the pictures for the
chapter headings. Finally, we again acknowledge the critical inputs and contributions
of all who are listed in the prefaces of the earlier editions.

Robert E. Reed-Hill
Reza Abbaschian
Lara Abbaschian
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The Structure of Metals

The most important aspect of any engineering material is its structure, because its
properties are closely related to this feature. To be successful, a materials engineer must
have a good understanding of this relationship between structure and properties. By way
of illustration, wood is a very easy material in which to see the close interaction between
structure and properties. A typical structural wood, such as southern yellow pine, is essen-
tially an array of long hollow cells or fibers. These fibers, which are formed largely from
cellulose, are aligned with the grain of the wood and are cemented together by another
weaker organic material called lignin. The structure of wood is thus roughly analogous to
that of a bundle of drinking straws. It can be split easily along its grain; that is, parallel to
the cells. Wood is also much stronger in compression (or tension) parallel to its grain than
it is in compression (or tension) perpendicular to the grain. It makes excellent columns
and beams, but it is not really suitable for tension members required to carry large loads,
because the low resistance of wood to shear parallel to its grain makes it difficult to attach
end fastenings that will not pull out. As a result, wooden bridges and other large wooden
structures are often constructed containing steel tie rods to support the tensile loads.

1.1 THE STRUCTURE OF METALS

The structure in metals is of similar importance to that in wood, although often in a more
subtle manner. Metals are usually crystalline when in the solid form. While very large sin-
gle crystals can be prepared, the normal metallic object consists of an aggregate of many
very small crystals. Metals are therefore polycrystalline. The crystals in these materials are
normally referred to as its grains. Because of their very small sizes, an optical microscope,
operating at magnifications between about 100 and 1000 times, is usually used to examine
the structural features associated with the grains in a metal. Structures requiring this range
of magnification for their examination fall into the class known as microstructures.
Occasionally, metallic objects, such as castings, may have very large crystals that are
discernible to the naked eye or are easily resolved under a low-power microscope. Structure
in this category is called macrostructure. On the other hand, there are materials whose grains
or sizes are much finer and in the nanoscale range. These microstructures are commonly
referred to as nanostructures, with scales on the order of one billionth of a meter. It should
be noted that nanoscale features can be in one dimension, as in nanosurfaces or nanofilms;
in two dimensions, as in nanotubes or whiskers; or in three dimensions, as in nanoparti-
cles. Nanoprecipitates such as Guinier and Preston (GP) Zones have been used for decades
for precipitation hardening of aluminum alloys, as discussed in Chapter 16. Finally, there is
the basic structure inside the grains themselves: that is, the atomic arrangements inside the
crystals. This form of structure is logically called the crystal structure.

Of the various forms of structure, microstructure (that visible under the optical
microscope) has been historically of the greatest use and interest to the metallurgist.
Because the metallurgical microscope is normally operated at magnifications where its
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2 CHAPTER 1 THE STRUCTURE OF METALS

depth of field is extremely shallow, the metallic surface to be observed must be very flat.
At the same time, it must reveal accurately the nature of the structure inside the metal.
One is therefore presented with the problem of preparing a very smooth flat and
undistorted surface, which is by no means an easy task. The procedures required to
obtain the desired goal fall under the general heading of metallographic specimen prepa-
ration. Detailed description of metallographic sample preparation techniques and
examples of microstructures can be found in Reference 1.

A crystal is defined as an orderly array of atoms in space. There are many different
types of crystal structures, some of which are quite complicated. Fortunately, most met-
als crystallize in one of three relatively simple structures: the face-centered cubic, the
body-centered cubic, and the close-packed hexagonal.

1.2 UNIT CELLS

The wunit cell of a crystal structure is the smallest group of atoms possessing the symmetry
of the crystal which, when repeated in all directions, will develop the crystal lattice.
Figure 1.1A shows the unit cell of the body-centered cubic lattice. It is evident that its
name is derived from the shape of the unit cell. Eight unit cells are combined in Fig. 1.1B
in order to show how the unit cell fits into the complete lattice. Note that atom a of
Fig. 1.1B does not belong uniquely to one unit cell, but is a part of all eight unit cells that
surround it. Therefore, it can be said that only one-eighth of this corner atom belongs to
any one-unit cell. This fact may be used to compute the number of atoms per unit cell in
a body-centered cubic crystal. Even a small crystal will contain billions of unit cells, and
the cells in the interior of the crystal must greatly exceed in number those lying on the
surface. Therefore, surface cells may be neglected in our computations. In the interior of
a crystal, each corner atom of a unit cell is equivalent to atom a of Fig. 1.1B and con-
tributes one-eighth of an atom to a unit cell. In addition, each cell also possesses an atom
located at its center that is not shared with other unit cells. The body-centered cubic lat-
tice thus has two atoms per unit cell; one contributed by the corner atoms, and one
located at the center of the cell, as shown in Fig. 1.1C.

The unit cell of the face-centered cubic lattice is shown in Fig. 1.2. In this case, the
unit cell has an atom in the center of each face. The number of atoms per unit cell in the
face-centered cubic lattice can be computed in the same manner as in the body-centered

(A) (B) ©

FIG. 1.1 (A) Body-centered cubic unit cell. (B) Eight unit cells of the body centered cubic
lattice. (€) Cut view of a unit cell
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FIG. 1.2 (A) Face-centered cubic unit cell.
(B) Cut view of a unit cell

cubic lattice. The eight corner atoms again contribute one atom to the cell, as shown in
Fig. 1.2B. There are also six face-centered atoms to be considered, each a part of two unit
cells. These contribute six times one-half an atom, or three atoms. The face-centered
cubic lattice has a total of four atoms per unit cell, or twice as many as the body-centered
cubic lattice.

1.3 THE BODY-CENTERED CUBIC STRUCTURE (BCC)

It is frequently convenient to consider metal crystals as structures formed by stacking
together hard spheres. This leads to the so-called hard-ball model of a crystalline lattice,
where the radius of the spheres is taken as half the distance between the centers of the
most closely spaced atoms.

Figure 1.3 shows the hard-ball model of the body-centered cubic (bcc) unit cell.
A study of the figure shows that the atom at the center of the cube is colinear with each
corner atom; that is, the atoms connecting diagonally opposite corners of the cube form
straight lines, each atom touching the next in sequence. These linear arrays do not end
at the corners of the unit cell, but continue on through the crystal much like a row of
beads strung on a wire (see Fig. 1.1B). These four cube diagonals constitute the close-
packed directions of the body-centered cubic crystal, directions that run continuously
through the lattice on which the atoms are as closely spaced as possible.

FIG. 1.3 Hard-ball model of the body-centered
cubic unit cell




