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Preface: To the Teacher

The first edition of this book was addressed to students in psy-
chology, and most of the examples and explanations were designed with that
audience in mind. Happily, the book has also appealed to a wider group, and has
had a favorable reception by students and teachers in most of the other social and
behavioral sciences. In view of this reception, I have been persuaded by the
publisher to give the new edition a title which suggests its usefulness beyond the
immediate psychological community.

On the other hand, I have not taken the further step of trying to
rewrite the book so as to appeal to every conceivable user, since I felt this would
destroy its essential unity of approach. Hence, the book often reads as though it
were still addressed to students in psychology. I do not feel this to be any great
barrier to its use by students in other fields, however. The examples cited are by
no means exotic in their psychological content, and most of the issues discussed
and the methods presented occur in all fields of social and behavioral research.

The aim of the book remains precisely the same as outlined in the
preface to the first edition: to give the elements of modern statistics in a relatively
nonmathematical form, but in somewhat more detail than is customary in such
texts, and with considerably more emphasis on the theoretical than upon the
applied and computational aspects of the methods. Indeed, I feel that the utility
of such an approach may be even greater now than it was ten years ago. A large
proportion of statistical analysis is now done on the computer, and the research
worker relies considerably on a library of ready-made statistical programs. The
problem is no longer so much “how to do it” as it is how to select an appropriate
technique which will give results in the format needed. Nevertheless, the inter-
pretation of a result remains just as big a problem as before. It now seems in-
creasingly important for the student to understand the background of the large
number of statistical methods available, and to know how and when to carry his
problem to a statistician for advice and assistance. The author continues to hope
that this book will help the student to learn to do these things.

The content of the book has been expanded in several ways. A good
bit of additional space has been given to elementary distribution theory, in order
to provide the student with somewhat more groundwork in this area. Several
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iv  Preface: To the Teacher

additional families of distributions, such as the Pascal, the gamma, and the beta,
are discussed, both because of their intrinsic importance and because they provide
some useful techniques. Exercises have been included at the ends of the chapters,
along with solutions to odd-numbered problems. Hopefully, these will be useful to
student and teacher alike, although teachers will likely wish to expand both the
range and the content with additional exercises.

A major change from the first edition is the inclusion of a fairly long
chapter on simple Bayesian methods. I believe that this approach and these
methods are now too important for an introductory text to ignore. The placement
of this chapter at the end of the book reflects my own opinion that a student
should have a pretty fair grounding in the classical methods before the Bayesian
approach is attempted.

It may be that much of the material on set and function theory is
now superfluous for students brought up on the new mathematies. If so, well and
good, let these students start with Chapter 2. However, if the new math is retained
like the old, then much of this exposure may have worn off by the middle or late
university years, and a quick review may be welcomed by many students.

Finally, in addition to all of those whose help I acknowledged in the
preface to the first edition, I wish to express my thanks to Professor William
Kruskal of the University of Chicago, who contributed many helpful suggestions
toward this revision, and especially to Professor J. E. Keith Smith of the University
of Michigan, whose careful review of the first edition had much to do with shaping
the present version. I wish also to thank Professor E. S. Pearson and the trustees
of Biometrika for their permission to reproduce selections from the Biometrika
Tables for Statisticians, Vol. I (3d ed.), and to Professor R. S. Burington and the
McGraw-Hill Company for permission to reproduce the table of binomial proba-
bilities from R. S. Burington and D. C. May, Handbook of Probability and Statis-
tics with Tables (2d ed.). Most of all, I wish to thank all of the many students
and teachers who have so thoughtfully contributed corrections and suggestions
over the years. I hope that my work is worthy of you.

W.L.H.

Ann Arbor
November 1972



Preface: To the Student

In its original version, this book was designed for students in
experimental psychology. Therefore, many of the examples and much of the dis-
cussion deal with issues in that field. Most of these same problems occur in almost
identical form in the other social and behavioral sciences, however, and you as a
student, whatever your field, should not feel uncomfortable in translating
psychological examples and issues directly into your own content area. The
psychological examples are simple and easily understood, and every issue having
to do with psychological research applies equally well to the other social and
behavioral sciences.

In writing this book I assumed that its readers would be serious
students just beginning their late undergraduate or early graduate studies. I have
tried not to oversimplify or to write down to such students, and I believe that the
kinds of students I have in mind will not be dismayed by some tough issues, by
some algebraic manipulations, or by the prospect of learning more mathematics.
In fact, many students find it interesting, and often exciting, to follow a logical
argument and to try to anticipate what the next step will be. I have provided a
great deal more explanation and discussion than is customary in statistics texts,
largely because I believe that if a student is serious enough to contemplate a
research career, he should be also serious enough to want to understand his
research tools as fully as possible. I am not so naive as to believe that this will be
true of all students, and some of you are going to find this book long-winded,
complicated, and deadly. To you my sympathy! On the other hand, I am happy
to say that many students find the content interesting, and even downright
fascinating. These are the students I have in mind as I write. They are the “you”
in this book.

Anyone who has had any exposure at all to the social and behavioral
sciences does not need to be told that statistics is an important tool in these
fields. Statistics serves in at least two capacities. First, it gives methods for organ-
izing, summarizing, and communicating data. Second, it provides methods for
making inferences beyond the observations actually made to statements about
large classes of potential observations. The set of methods serving the first of these
functions is generally called descriptive statistics, the body of techniques for
effective organization and communication of data. When the man on the street
speaks of “statistics” he usually means data organized by these methods. How-
ever, the major emphasis in this book is on inferential statistics, the body of
methods for arriving at conclusions extending beyond the immediate data. A
large part of the mathematical theory of statistics is concerned with the problem
of inference, and with the development of inferential methods. Furthermore, most
of the interesting and important applications of mathematical statistics to the
sciences concern problems of inference. This book attempts to lay some of the
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vi Preface: To the Student

groundwork for an understanding of the origins of inferential methods and their
applications to data.

You will soon discover that the main concern in this book is with the
mathematical theory underlying inferential methods, rather than with a detailed
exposition of all the different methods psychologists and others find useful. The
author had no intention of writing a ‘“‘cookbook” that would equip the student to
meet every possible situation he might encounter in his work. Many methods will
be introduced, it is true, and we will, in fact, discuss most of the elementary
techniques for statistical inference currently in use. However, in the past few
years the concerns of the social scientist have begun to grow increasingly com-
plicated. Psychological theory is growing, psychologists are turning their attention
to new problems, and techniques for experimentation are becoming much more
sophisticated than in the past. The same thing is happening in the other social
and behavioral sciences. The statistical analyses required in many such experi-
ments are simply not in the “cookbooks.” From all indications, this trend will
continue, and by the time that you, the student, are in the midst of your profes-
sional career it may well be the case that entirely new statistical methods will be
required, replacing many of the methods currently found useful.

As social and behavioral research becomes more sophisticated and
mathematical statistics produces more and more methods appropriate to particu-
lar situations, a point is rapidly being reached where the research worker simply
cannot be familiar with all the statistical methods appropriate to his work. It
seems unfair to demand that each competent researcher must also be a competent
mathematical statistician as well, although a few gifted individuals (not including
the author) have somehow found time and brain-power to be both. Furthermore,
the advent of electronic computers has opened up new avenues of data-analysis,
making it possible to answer questions that were formerly unanswerable because
of the sheer arithmetical complexity of the analysis involved. In short, the days
when each researcher was his own ‘““do it yourself” statistician, relying on his
handy cookbook, are about over.

What, then, is the research scientist to do? He wants the answers that
statistical analysis can give him, but he may not know the range of methods open
to him within theoretical statistics itself. The answer is very simple: when in
doubt, ask a statistician, a man whose principal training and commitment is in
mathematical statistics and the development of such methods. A large part of the
work of most applied statisticians consists of consultation on problems of design
and analysis of experiments, and many are available for such consultation on a
professional basis. The statistician can usually provide answers to the research
worker’s questions, provided that the statistician is asked about the problem before
the data are collected, and can participate in the efficient and logical planning of the
experiment. It is most unreasonable to expect the statistician to reach in his hat
and pull out a method that will extract meaning from a poorly designed or
executed study.

In order to use the resources of mathematical statistics and statisti-
cians the research scientist must know something about the nature of mathematical
statistics. He should be able at least to talk to the statistician in terms they both
understand. The statistician does not expect the scientist to know all about
theoretical statistics, nor does the scientist expect the statistician to know all
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about his particular problem. But to work together effectively, each must have
some idea of the basic concepts the other uses. This is the reason for the theoretical
emphasis in this book. At the very outset, the student needs to know something
about the nature of theoretical statistics if he is to appreciate the resources of
statistics and not become lost in the complexities of using statistical methods
effectively.

This book s not, nor does 1t pretend to be, a first course in mathematical
statistics. Ideally, the serious student in the social or behavioral sciences should take
at least one such course. However, there are two practical difficulties: The content
and the organization of courses in mathematical statistics are framed for the
training of statisticians, not behavioral scientists and the peculiar problems of
these research areas are not emphasized in such courses: This is as it should be. In
the second place, to become a really good researcher is a full-time job, and the
student may not have the time to devote to the mathematical statistics courses
and their prerequisites in order to gain the essential background he needs.

Thus, this book contains some of the concepts, results, and theoreti-
cal arguments that come from mathematical statistics, but these results and argu-
ments are given at a far more intuitive and informal level than would be the case
for a student in mathematics. Only very seldom will the level of mathematics used
rise above the high school level, although the mathematical concepts used will
occasionally be unfamiliar to most students. In particular we will use some results
coming from the application of the calculus, especially results having to do with
the idea of a “limit”’; these ideas really cannot be treated adequately at an ele-
mentary level. From a mathematician’s technical point of view, many of our
statements are incomplete, poorly framed, or imprecise. On the other hand, many
of these ideas can be grasped intuitively by the serious student, and the author
feels that this intuitive understanding is better than no understanding at all,
provided that the student understands the limitations of a presentation such as
this.

A number of topics have been included that have little or no direct
application to social or behavioral science at this time, because the author feels
that these topics do help to clarify some theoretical point. On the other hand, a
few topics ordinarily included in elementary statistics books have been omitted,
largely because they have rather minor importance and the author preferred to
devote space to other matters. Finally, some techniques are included simply
because the author feels that you, as a research worker, might want to know these
methods. These are techniques that are useful even in elementary experimenta-
tion, although they are usually given extensive coverage only in more advanced
texts.

The student also should understand that the examples in this book
are hypothetical. This, admittedly, goes against current practice in such texts. On
the other hand, the author feels that it is more important to have a fairly simple
and plausible problem that the beginner in research can understand and that
illustrates the method clearly, than to try to provoke the student into exclaiming,
“Gee, they really do use statistics in research!” Presumably, a student who has
had an adequate introductory course in his field knows this already.

A glance at the table of contents reveals the topics covered, and
there is little point in a detailed listing here. However, it should be pointed out
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that the chapters in this book fall roughly into two sections: Chapters 1 through 8
deal very largely with the essential ideas of probability and of distributions, the
two central notions of theoretical statistics. The first chapter lays a foundation for
these topics by introducing three very fundamental mathematical concepts: set,
relation, and function. A clear idea of these concepts can do a great deal to clarify
the remainder of the book. Chapters 2 through 8 are very closely related in the
topics covered, and each succeeding chapter builds on the concepts introduced in
the preceding ones.

Chapter 9 develops some of the issues connected with the actual use
of results from theoretical statistics, particularly the problem of making up one’s
mind from data. Chapters 10 through 18 discuss particular methods for various
kinds of inferences to be made in simple experimental situations. Finally, Chapter
19 gives some of the basic ideas of Bayesian statistics, an alternate approach.

A theme that runs throughout this book is the search for relation-
ships through experimentation. A statistical relation will be said to exist when
knowledge of one property of an object or event reduces our uncertainty about
another property that object or event will show. A statistical relation occurs when
things tend to “go together” in a systematic way. This theme will recur ad
nauseam in the chapters to follow, but it is an important one.

Very many mathematical expressions occur throughout this text.
These are of three kinds: algebraic equivalences serving as steps in some deriva-
tion, actual definitions or principles stated mathematically, and computational
formulas useful in some method. Some of the mathematical expressions are num-
bered; ordinarily this occurs when some reference will be made to that expression
at a later point. If the number for any expression is followed by an asterisk (*),
then this is an important definition or relationship that is worthy of your special
attention. If an expression is primarily a computing formula, then this will be
given a dagger (}) following the number.

A few words must also be said about the symbols we will use.
Generally, when a new symbol is introduced, it will be given an ‘“‘on the spot”
definition. However, there are a few symbols in such widespread use that the
author may omit their definition; or you may have forgotten what the symbol
meant on its first introduction. In either case you will find the glossary of symbols
in the back of the book helpful. Furthermore, Appendixes A and B, rules for the
manipulation of summations and of expectations, are very important, since we will
use these rules to considerable extent in our simple derivations of results.

So far we have talked at length about the author’s expectations
about the student and the reasons underlying this book, but we have failed to say
much about the topic itself. Next we will take an overview of what inferential
statistics is about. In addition, some ideas about formal systems and mathemati-
cal models will be given, which may help the student understand how “statistics”
can mean both a body of applied methods and a mathematical theory.

Applications of statistics occur in virtually all fields of research
endeavor—the physical sciences, the biological sciences, the social sciences, engi-
neering, market and consumer research, quality control in industry, and so on,
almost without end. Although the actual methods differ somewhat in the different
fields, the applications all rest on the same general theory of statistics. By examin-
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ing what the fields have in common in their applications of statistics we can gain a
picture of the basic problem studied in mathematical statisties. The major applica-

tions of statistics in any field all rest on the possibility of repeated observations or
experiments made under essentially the same conditions. That is, either the researcher
actually can observe the same process repeated many times, as in industrial
quality control, or there is the conceptual possibility of repeated observation, as in
a scientific experiment that might, in principle, be repeated under identical
conditions. However, in any circumstance where repeated observations are made,
even though every precaution is taken to make conditions exactly the same the
results of observations will vary, or tend to be different, from trial to trial. The
researcher has control over some, but not all, of the factors that make outcomes
of observations tend to differ from each other.

In some areas of research, objects or phenomena viewed under the
same conditions will vary only to a small extent. This is certainly true in some
branches of physical science, where observations made under carefully controlled
conditions give virtually identical results. On the other hand, in the biological,
and especially the social, sciences, even though the experimenter exerts almost
superhuman efforts to observe repeatedly under precisely the same conditions,
some differences among his observations will occur, and these differences are
ordinarily not negligible.

When observations are made under the same conditions in one or
more respects, but they give outcomes differing in other ways, then there is some
uncertainty connected with observation of any given object or phenomenon.
Even though some things are known to be true about that object in advance of
the observation, the experimenter cannot predict with complete certainty what
its other characteristics will be. Given enough repeated observations of the same
object or kind of object the experimenter may be able to formulate a good bet
about what the other characteristics are likely to be, but he cannot be completely
sure of the status of any given object.

This fact leads us to the central problem-of theoretical statistics:
wn one sense, mathematical statistics is a theory abowt uncertainty,)the tendency of
outcomes to vary when repeated observations are made under identical conditions.
Granted that certain conditions are fulfilled, theoretical statistics permits deduc-
tions about the likelihood of the various possible outcomes of observation. The
essential concepts in statistics derive from the theory of probability, and the
deductions made within the theory of statistics are, by and large, statements about
the probability of particular kinds of outcomes, given that initial, mathematical,
conditions are met.

Mathematical statistics is a formal mathematical system. Any
mathematical system consists of these basic parts:

1. A collection of undefined ‘‘things’’ or ‘‘elements,”’ considered only as abstract
entities;

2. A set of undefined operations, or possible relations among the abstract
elements;

3. A set of postulates and definitions, each asserting that some specific relation
holds among the various elements, the various operations, or both.
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In any mathematical system the application of logic to combina-
tions of the postulates and definitions leads to new statements, or theorems, about
the undefined elements of the system. Given that the original postulates and
definitions are true, then the new statements must be true. Mathematical systems
are purely abstract, and essentially undefingd, dedpgtive&uctures. In the first
chapter, the theory of sets will be used as an example of an abstract system of
this sort, and the theory of probability also has this character, as we shall see.

Mathematical systems are not really “about” anything in particular.
They are systems of statements about ‘“things’” having the formal properties
given by the postulates. The mathematician does not, in fact, have to commit
himself about what he really has in mind to call these abstract elements; indeed,
he may have absolutely nothing in mind that exists in the real world of experience,
and his sole concern may be in what he can derive about the other necessary
relations among abstract elements given particular sets of postulates. It is per-
fectly true, of course, that many mathematical systems originated from attempts
to describe real objects or phenomena and their interrelationships: historically,
the abstract systems of geometry, school algebra, and the calculus grew out of
problems where something very concrete was in the back of the mathematician’s
mind. However, as mathematics these systems deal with completely abstract
entities.

When a mathematical system is interpreted in terms of real objects
or events, then the system is said to be & mathematical m'ocle?for those objects
or events. Somewhat more precisely, the undefined terms in the mathematical
system are identified with particular, relevant, wij@gf_objects or events;
thus, in applications of arithmetic, the number symbols are identified with
magnitudes or amounts of some particular property that objects possess, such as
weight, or extent, or numerosity. The system of arithmetic need not apply to
other characteristics of the same objects, as, for example, their colors. Once this
identification can be made between the mathematical system and the relevant
properties of objects, then anything that is a logical consequence in the system is a
true statement about objects in the model, provided, of course, that the formal
characteristics of the system actually parallel the real characteristics of objects in terms
of the particular properties considered. In short, in order to be useful as a mathe-
matical model, a mathematical system must have a formal structure that “fits”
at least one aspect of a real situation.

Probability theory and statisties are each both mathematical sys-
tems and mathematical modelwm elements called
“events,” which are completely abstract. Furthermore, these abstract things are
paired with numbers called @probabilities.m'The theory itself is the system of
logical relations among these essentially undefined things. The experimenter uses
this abstract system as a mathematical model: his experiment produces a real
outcome, which he calls an event, and he uses the model to find a probability,
which he interprets as the relative frequency of occurrence for that outcome. If -
the requirements of the model are met, this is a true, and perhaps useful result.
If his experiment really does not fit the requirements of probability theory as a
system, then the statement he makes about his actual result need not be true.
(This point must not be overstressed, however. We will find that often a statistical



Preface: To the Student xi

method can yield practically useful results even when its requirements are not
fully satisfied. Much of the art in applying statistical methods lies in understand-
ing when and how this is true.)

Mathematical systems such as probability theory and the theory of
statistics are, by their very nature, deductive. That is, formal assertions are
postulated as true, and then by logical argument true conclusions are reached.
All well-developed theories have this formal, logico-deductive character.

On the other hand, the problem of the empirical scientist is essen-
tially different from that of the logician or mathematician. Scientists search for
general relations among events; these general relations are those which can be
expected to hold whenever the appropriate set of circumstances exists. The very
name ‘‘empirical science’”asserts that these laws shall be discovered and verified

by the actual observation of what happens in the real world of experience. How-
ever, no mortal scientist ever observes all the phenomena about which he would
like to make a generalization. He must always draw his conclusions about what
would happen for all of a certain class of phenomena by observing a very few
particular cases of that phenomenon.

'The student acquainted with logic will recognize that this is a prob-

lem of Eﬂ@ctigrq The rules of logical deduction dre rules for arriving at true conse-
quences from true premises. Scientific theories are, for the most part, systems of
deductions from basic principles held to be true. If the basic principles are true,
then the deductions must be true. However, how does one go about arriving at and
checking the truth of the initial propositions? The answer is, for an empirical
science, observation and|inductive )g‘enera]izationjrgoir}g from what is true of
some observations to a statement that this is true for all possible observations
made under the same conditions. Any empirical science begins with observation
and generalization. . I

o Furthermore, even after deductive theories exist in a science, experi-
mentation is used to check on the truth of these theories. Observations that con-
tradict deductions made within the theory are prima-facie evidence against the
truth of the theory itself. Yet, how does the scientist know that his results are not
an accident, the product of some chance variation in procedure or conditions over
which he has no control? Would his result be the same in the long run if the experi-
ment could be repeated many times?

It takes only a little imagination to see that this process of going
from the specific to the general is a very risky one. Each observation the scientist
makes is different in some way from the next. Innumerable influences are at work
altering—sometimes minutely, sometimes radically—the similarities and differ-
ences the scientist observes among events. Controlled experimentation in any
science is an attempt to minimize at least part of the accidental variation or
“error” in observation. Precise techniques of measurement are aids to the scientist
in sharpening his own rather dull powers of observation and comparison among
events. So-called “‘exact sciences,” such as physics and chemistry, have thus been
able to remove a substantial amount of the unwanted variation among observa-
tions from time to time, place to place, observer to observer, and hence are often
able to make general statements about physical phenomena with great assurance
from the observation of quite limited numbers of events. Observations in these
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sciences can often be made in such a way that the generality of conclusions is not
a major point at issue.

In the biological and social sciences, however, the situation is radi-
cally different. In these sciences the variations between observations are not sub-
ject to the precise experimental controls that are possible in the physical sciences.
Refined measurement techniques have not reached the stage of development that
they have attained in physics and chemistry. Consequently, the drawing of general
conclusions is a much more dangerous business in these fields, where the sources of
variability among living things are extremely difficult to identify, measure, and
control. And yet the aim of the social or biological scientist is precisely the same
as that of the physical scientist—arriving at general statements about the phe-
nomena under study.

Faced as he is with only a limited number of observations or with
an experiment that he can conduct only once, the scientist can reach general con-
clusions only in the form of a “bet’” about what the true, long run, situation actu-
ally is like. Given only sample evidence, the scientist is always unsure of the
“goodness” of any assertion he makes about the true state of affairs. The theory
of statistics provides ways to assess this uncertainty and to calculate the proba-
bility that he will be wrong if he decides in a particular way. Provided that the
experimenter can make some assumptions about what is true, then the deductive theory
of statistics tells him how ltkely he s to observe particular results. Armed with this
information, the experimenter is in better position to decide, if he must, what he
will say about the true situation. Regardless of what he decides from his evidence,
he could be wrong; but using deductive statistical theory he can at least determine
the probabilities of error in a particular decision.

In recent years, a branch of mathematics has been developed around
this problem of decision-making under uncertain conditions. This is sometimes
called “statistical decision theory.” One of the main problems treated in decision
theory is the choice of a decision rule, or “deciding how to decide” from evidence.
Decision theory evaluates rules for deciding from evidence in the light of what the
decision-maker wants to accomplish. As we shall see in later chapters, mathematics
can tell us wise ways to decide how to decide under some circumstances, but it can
never tell the experimenter how he must decide in any particular situation. The
theory of statistics supplies one very important piece of information to the experi-
menter: the probability of sample results given certain conditions. Decision theory
supplies another: optimal ways of using this and other information to accomplish
certain ends. Nevertheless, neither theory tells the experimenter ezxactly how to
decide—how to make the inductive leap from what he observes to what is true in
general. This is the experimenter’s problem, and he must seek the answer outside
of deductive mathematics, and in the light of what he is trying to do.

These, then, are a few of the reasons for studying inferential statis-
tics. The rest of this book will go into the background and details of how these
methods are developed and used. I hope that you enjoy learning about them as
much as 1 have enjoyed trying to explain them for you.

W.L.H.
Ann Arbor
November 1972
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