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Preface

The idea of editing a series of volumes on The Biochemistry and Molecular Bi-
ology of Fishes was born out of the present-day lack of a forum for state-of-the-art
review articles in this rapidly expanding field of research. On the one hand, researchers
and students in this area always find themselves combing the literature on general
(rat-dominated) biochemistry before discovering short and usually incomplete and
disappointing coverage of the situation in the piscine setting. On the other hand, the
rapidly expanding volume and quality of the primary literature in fish biochemistry
and molecular biology supply convincing evidence for a maturing field. This discipline
is no longer the younger sibling of rat or human biochemistry but has recently led to
a number of major conceptual breakthroughs; tor this reason, and because its activ-
ity domain is sometimes nonoverlapping with ‘mainstream’ biochemistry, the field is
certainly ripe and ready for a review series of its own.

Comparative biochemistry and molecular biology and comparative physiology as
disciplines by definition use organisms as a special kind of experimental parameter
for probing general mechanisms and principles of function. In theory this approach is
relatively blind to phylogenetic boundaries, but in practise the realities of funding and
availability of experimental material greatly narrow the field of play. As a result, two
phylogenetic groups — the insects and the fishes — have over the last several decades
provided the bulk of the experimental data base in these disciplines. Interestingly,
although comparative biochemistry in many ways grew out of comparative physiol-
ogy, the growth and development of these two activities in the insect field have to
major extent proceeded along independent paths. By contrast, the comparative phys-
iology and biochemistry of fishes have not been so independent of one another and
the tendency has been for the former to envelope the latter. We believe that the cur-
rent conceptual developments in the fields as well as the simple logistics of dealing
with massive data bases make this the right time for the reality of independence to
match the perception of independence, which we feel is another important rationale
for this review series.

Our goal is to provide researchers and students with a pertinent information source
from theoretical and experimental angles. To be useful to students, theoreticians,
and experimentalists alike, contributing authors are urged to emphasize concepts
as well as to relate experimental results to the biology of the animals, to point out
controversial issues, and to delineate as much asis possible directions for future
research.

Peter W. Hochachka
Thomas P. Mommsen ¢
Vancouver and Victoria. B.C.
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1. Introduction

Because it is one of the most aerobic muscles in fish, the red muscle of tuna
is of particular interest to study strategies and constraints in structural designs
for high O, flux from capillary to muscle fiber mitochondria. Tuna can maintain
extremely high aerobic metabolic rates and reach high swimming speeds*. The tuna
red muscle is well known to operate at higher than ambient water temperature by
conserving heat via the central counter-current heat exchange (for review, see ref.
36), and white muscle lactate turnover rates after exercise are known to be closer
to those found in mammals than in other fish!*°. In this chapter, we summarize
our morphometric findings on the three-dimensional arrangement of#the capillary
network and its relationships with fiber ultrastructure in red muscle of skipjack
tuna, Katsuwonus pelamis, in comparison to highly aerobic skeletal muscles of birds
and mammals. Muscles designed for high sustainable activity (hummingbird and
bat flight muscles as well as the red muscie of tuna) are all composed of only
one population of very highly aerobic fibers, instead of the mosaic of fiber types
with different metabolic pattern found in the vast majority of skeletal muscles.
This homogeneity allows one to specifically examine capillary-fiber ‘;eometrical
relationships across species, in particular vascular supply in relation to muscle
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fiber aerobic capacity in cases of very high demand for O, flux. As summarized
further in this chapter, previous studies showed siriking similarities in structural
design for high O, flux in hummingbird and bat flight muscles despite several
differences in capillary-fiber geometry?®*°. In fish as in birds, red blood cells are
nucleated and less deformable than mammalian red cells, but they can be larger
than bird red cells, and fishes operate at different body temperature than both
birds*4nd mammals. Thus, it is of particular interest: (1) to examine capillary-fiber
structural arrangement in the red muscle of one of the most athletic fishes known;
and (2) to compare it with that in highly aerobic skeletal muscles of birds and
mammals.

1I. Materials and methods

While the details of methods used here have been described elsewhere??, it is
important to briefly highlight aspects that are relevant to properly explain the
results.

1. Animals

Five Skipjack tuna (Katsuwonus pelamis); body mass 1.5-2 kg; fork length 43-44
cm) were purchased from local commercial fishermen and held in outdoor 10 m
diameter holding tanks supplied with continuously flowing seawater (25 + 1°C)
at the Kewalo Research Facility (National Marine Fisheries Service, Honolulu,
Hawaii).

2. Tissue preparation

After the tunas had been netted and anesthetized, muscle perfusion fixation with
glutaraldehyde fixative (four animals) or infusion with Batson’s casting material
(one animal) were performed following procedures and subsequent tissue process-
ing described elsewhere in detail®’. Transverse and longitudinal sections (1 wum
thick) of perfusion-fixed tissue were used for light microscopy morphometry of
capillarity and fiber size. Ultrathin transverse sections (50-70 nm) were examined
with a Zeiss 10 transmission electron microscope and sampled for morphometry of
fiber ultrastructure. Samples injected with casting material were examined with a
Stereoscan 360 scanning electron microscope (Cambridge Instrument).

3. Morphometry

Sarcomere length was measured on longitudinal sections, after careful control
of the angle of each section!”. Fiber cross-sectional area, capillary diameter and
capillary number around a fiber were measured on transverse sections with an image
analyzer. Capillary numbers per fiber sectional area in transverse and longitudinal
sections were collected by point-counting. and the data were used to estimate
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the degree of orientation of capillaries and capillary length per fiber volume'.
Capillary-to-fiber ratio (i.e. capillary number per fiber number) was computed as
the product of capillary density (i.e. number per fiber cross-sectional area) and
mean fiber cross sectional area. Capillary surface per fiber volume was obtained
by intersection-counting on vertical (i.e. longitudinal) sections using a cycloid
grid®. Capillary-to-fiber perimeter ratio in transverse section, which is an index of
the size of the capillary-fiber interface® was measured by intersection-counting
in transverse sections®!, and capillary surface per fiber surface estimated as the
product of capillary-to-fiber perimeter ratio and an orientation coefficient ¢'(K’,0)
as described elsewhere?.

The volume of mitochondria per volume of muscle fiber was estimated by stan-
dard point-counting®®, and mitochondrial voiume per um fiber length calculated as
the product of mitochondrial volume density and fiber cross-sectional area. Where
appropriate, data on fiber size and capillary density were normalized to sarcomere
length, in order to compare morphological data between muscles, independent of
the particular length at which each sample was fixed and therefore examined. A
normalizing sarcomere length of 2.1 um was chosen because it is in the mid-range
of the sarcomere lengths where maximal tension is developed in skeletal muscles,
and it is within the range of operating sarcomere lengths in hindlimb muscles of
mammal during terrestrial locomotion (range, 1.7-2.7 um)®, wing muscles of bird
during wing beat cycle (1.7-2.3 um)> and red muscle in fish during swimming at
slow speed (1.9-2.2 um)™®.

III. Results and discussion

Figure la-c illustrates the high capillary density, small fiber size and high mi-
tochondrial volume density previously reported in red muscle of tuna®!016-22, In
longitudinal sections (Fig. 1b), we found a large number of capillaries cut in trans-
verse or oblique section, as well as branches running perpendicular to the muscle
fiber axis. This suggested the presence of capillary manifolds in tuna red muscle,
as previously found in the highly aerobic pectoralis muscle of pigeon’. Figure 2a.b
illustrate the remarkable similarity between the appearance of capillary manifolds
in tuna red muscle (Fig. 2a) and pigeon pectoralis muscle (Fig. 2b). In that study,
Potter and coworkers®* showed that these capillary branches oriented perpendicular
to the muscle fiber axis are venular capillaries which form dense manifeids around
groups of muscle fibers. The examination of microcorrosion casts of tuna red muscle
also showed that capillaries form a dense envelope of blood around muscle fibers
(Fig. 2¢).

The functional implications of the particular arrangement of venular capillaries
in those muscles are not fully understood. Capillary manifolds could facilitate an
increased vascular supply to and from the muscle fibers at the venular end of
the network where substrates and O, content are lowest and metabolitd concen-
tration highest. They could aiso be related to other functional aspects such as
heat dissipation and/or the blood pumping action of the muscle during flight in
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Fig. 1. Fine structure of tuna red muscle. a and b: light micrographs of portions of muscle bundles
in transverse and longitudinal sections, respectively. c: electron micrograph of transverse section of
muscle fibers and adjacent capillaries (c). Capillaries are empty after the fixation by vascular perfusion.
Note large capillary density and small fiber size (a-c), large number of capillary branches running
perpendicular to the muscle fiber axis (b) and high density of mitochondria, M (c). From ref. 22.

birds. Interestingly, however, capillary manifolds were found in flight muscle of
hummingbird?®, but not in bat***°. The fact that they were found in tuna red muscle
also suggest possible rheological implications since in fish. as in bird. red blood cells
are nucleated and less deformable than mammalian red cells. Another possibility
in tuna is transfer of heat from the muscle at the venular end of the network, as it
possibly favors heat removal in bird flight muscle=’ -

Table 1 summarizes morphometric data on capillarity and fiber ultrastructure
in red muscle of tuna compared with tuna white muscle. and aerobic muscles of
birds and mammals with large differences in aerobic capacities. In tuna red muscle.
fiber cross-sectional area was small (~500 um-) but not as small as in ultimate
cases of high aerobic capacity in bird and mammal. In hummingbird and bat flight
muscles. average fiber cross-sectional area was ~200 and 300 pm-. respectively, in
tissues similarly prepared. Note that the number of capillaries per number of fibers
was similar in tuna red muscle and hummingbird flight muscle (~1.6). However.
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Fig. 2. Examples of capillary manifolds. a: light micrograph in a longitudinal section of tuna red muscle.
b and c: scanning electron micrographs of vascular corrosion casts examined perpendicular to the
surface of the manifold in pigeon flight muscle (b) and in cross-section in tuna red muscle (c). Note
the remarkable similarity between the appearance in tuna (a) and pigeon (b) muscles, and the dense
envelope formed by capillaries around muscle fibers (c). Based on fiber dimensions, two muscle fibers
(A and B) could be contained in the empty space in ¢. From refs. 22 (a,c) and 34 (b).

re

because of the difterence in fiber size, there was a huge difference in capillary
numerical density between the muscles. The number of capillaries per mm* fiber
cross-sectional area at 2.1 pum sarcomere length was 3400 in tuna red muscle and
8000 in flight muscle of hummingbird.

Capillary length density is an important estimate ot capillarization which ac-
counts for capillary geometry, and determines capillary volume and sutface area
available for exchange per unit volume of fiber and mitochondria. Figure 3 shows
estimates of the degree of capillary orientation. expressed as the percentage added
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Fig. 3. Plot of the degree of orientation of capillaries (expressed as the percentage added to capillary
length by tortuosity and branching, compared with straight, unbranched capillaries oriented parallel
to the muscle fiber axis) against sarcomere length in red muscle of tuna (solid circle) compared with
group mean values (£SE) in highly aerobic muscles of birds and mammals. From refs. 22 (tuna), 28
(hummingbird) and 29 (bat). Relationships in rat hindlimb (solid line) and pigeon pectoralis muscles
(broken line) are from refs. 25 and 20, respectively.

to capillary length by tortuosity and branching, against sarcomere length in the
muscles listed in Table 1. It is now well established that both fiber size”!!*® and
the degree of orientation of capillaries'®-"-3? are functions of sarcomere length. As
a consequence, capillary density in transverse sections can underestimate capillary
length per fiber volume by a different percentage (e.g. 10-70% in rat muscles;
see solid line in Fig. 3) depending on the sarcomere length at which samples are
fixed and therefore examined. Figure 3 also shows that the degree of orientation of
capillaries can vary between muscles and/or animals, for example bat flight muscle
compared with rat soleus, or bird compared with mammal. Therefore, it may not be
appropriate to compare muscle capillarity based on capillary densities in transverse
sections alone even if all samples are fixed at the same sarcomere length?%-22.28.29.32,

It is interesting to note that in tuna red muscle, the contribution of tortuosity
and branching to capillary length was similar to that in rat muscles (Fig. 3) in
spite of the different geometry. In contrast to tuna and bird muscles?>*® skeletal
muscles of mammals showed no evidence of capillary manifolds®. The different
contribution of capillary tortuosity and branching to capillary length in tuna red
muscle compared with bird muscles (Fig. 3) may be related to differences in fiber
size, yielding differences in length and/or number of branches in manifolds between
the muscles. In addition, capillary length density in tuna red muscle and pigeon
pectoralis muscle were remarkably similar (4100 mm/mm?) in spite of the different
degree of capillary orientation, capillary-to-fiber ratio and fiber size. It was less than
half the capillary length density seen in ultimate cases such as the flight muscles of
hummingbird and small bats (Table 1).



