THOMAS H. CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

CLIFFORD STEIN

@

IRD EDITION

.
Thomas H. Cormen

Charles E. Leiserson

Ronald L. Rivest

Clifford Stein

Introduction to Algorithms
Third Edition

The MIT Press
Cambridge, Massachusetts London, England

© 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu.
This book was set in Times Roman and Mathtime Pro 2 by the authors.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Introduction to algorithms / Thomas H. Cormen . . . [et al.].—3rd ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper)
1. Computer programming. 2. Computer algorithms. 1. Cormen, Thomas H.

QA76.6.15858 2009

005.1—dc22
2009008593

1098765432

Preface

Before there were computers, there were algorithms. But now that there are com-
puters, there are even more algorithms, and algorithms lie at the heart of computing.

This book provides a comprehensive introduction to the modern study of com-
puter algorithms. It presents many algorithms and covers them in considerable
depth, yet makes their design and analysis accessible to all levels of readers. We
have tried to keep explanations elementary without sacrificing depth of coverage
or mathematical rigor.

Each chapter presents an algorithm, a design technique, an application area, or a
related topic. Algorithms are described in English and in a pseudocode designed to
be readable by anyone who has done a little programming. The book contains 244
figures—many with multiple parts—illustrating how the algorithms work. Since
we emphasize efficiency as a design criterion, we include careful analyses of the
running times of all our algorithms.

The text is intended primarily for use in undergraduate or graduate courses in
algorithms or data structures. Because it discusses engineering issues in algorithm
design, as well as mathematical aspects, it is equally well suited for self-study by
technical professionals.

In this, the third edition, we have once again updated the entire book. The
changes cover a broad spectrum, including new chapters, revised pseudocode, and
a more active writing style.

To the teacher

We have designed this book to be both versatile and complete. You should find it
useful for a variety of courses, from an undergraduate course in data structures up
through a graduate course in algorithms. Because we have provided considerably
more material than can fit in a typical one-term course, you can consider this book
to be a “buffet” or “smorgasbord” from which you can pick and choose the material
that best supports the course you wish to teach.

Xiv

Preface

You should find it easy to organize your course around just the chapters you
need. We have made chapters relatively self-contained, so that you need not worry
about an unexpected and unnecessary dependence of one chapter on another. Each
chapter presents the easier material first and the more difficult material later, with
section boundaries marking natural stopping points. In an undergraduate course,
you might use only the earlier sections from a chapter; in a graduate course, you
might cover the entire chapter.

We have included 957 exercises and 158 problems. Each section ends with exer-
cises, and each chapter ends with problems. The exercises are generally short ques-
tions that test basic mastery of the material. Some are simple self-check thought
exercises, whereas others are more substantial and are suitable as assigned home-
work. The problems are more elaborate case studies that often introduce new ma-
terial; they often consist of several questions that lead the student through the steps
required to arrive at a solution.

Departing from our practice in previous editions of this book, we have made
publicly available solutions to some, but by no means all, of the problems and ex-
ercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to these solutions.
You will want to check this site to make sure that it does not contain the solution to
an exercise or problem that you plan to assign. We expect the set of solutions that
we post to grow slowly over time, so you will need to check it each time you teach
the course.

We have starred (x) the sections and exercises that are more suitable for graduate
students than for undergraduates. A starred section is not necessarily more diffi-
cult than an unstarred one, but it may require an understanding of more advanced
mathematics. Likewise, starred exercises may require an advanced background or
more than average creativity.

To the student

We hope that this textbook provides you with an enjoyable introduction to the
field of algorithms. We have attempted to make every algorithm accessible and
interesting. To help you when you encounter unfamiliar or difficult algorithms, we
describe each one in a step-by-step manner. We also provide careful explanations
of the mathematics needed to understand the analysis of the algorithms. If you
already have some familiarity with a topic, you will find the chapters organized so
that you can skim introductory sections and proceed quickly to the more advanced
material.

This is a large book, and your class will probably cover only a portion of its
material. We have tried, however, to make this a book that will be useful to you
now as a course textbook and also later in your career as a mathematical desk
reference or an engineering handbook.

Pr eface XV

What are the prerequisites for reading this book?

* You should have some programming experience. In particular, you should un-
derstand recursive procedures and simple data structures such as arrays and
linked lists.

* You should have some facility with mathematical proofs, and especially proofs
by mathematical induction. A few portions of the book rely on some knowledge
of elementary calculus. Beyond that, Parts I and VIII of this book teach you all
the mathematical techniques you will need.

We have heard, loud and clear, the call to supply solutions to problems and
exercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to solutions for
a few of the problems and exercises. Feel free to check your solutions against ours.
We ask, however, that you do not send your solutions to us.

To the professional

The wide range of topics in this book makes it an excellent handbook on algo-
rithms. Because each chapter is relatively self-contained, you can focus in on the
topics that most interest you.

Most of the algorithms we discuss have great practical utility. We therefore
address implementation concerns and other engineering issues. We often provide
practical alternatives to the few algorithms that are primarily of theoretical interest.

If you wish to implement any of the algorithms, you should find the transla-
tion of our pseudocode into your favorite programming language to be a fairly
straightforward task. We have designed the pseudocode to present each algorithm
clearly and succinctly. Consequently, we do not address error-handling and other
software-engineering issues that require specific assumptions about your program-
ming environment. We attempt to present each algorithm simply and directly with-
out allowing the idiosyncrasies of a particular programming language to obscure
its essence.

We understand that if you are using this book outside of a course, then you
might be unable to check your solutions to problems and exercises against solutions
provided by an instructor. Our Web site, http://mitpress.mit.edu/algorithms/, links
to solutions for some of the problems and exercises so that you can check your
work. Please do not send your solutions to us.

To our colleagues

We have supplied an extensive bibliography and pointers to the current literature.
Each chapter ends with a set of chapter notes that give historical details and ref-
erences. The chapter notes do not provide a complete reference to the whole field

xvi

Preface

of algorithms, however. Though it may be hard to believe for a book of this size,

space constraints prevented us from including many interesting algorithms.
Despite myriad requests from students for solutions to problems and exercises,

we have chosen as a matter of policy not to supply references for problems and

exercises, to remove the temptation for students to look up a solution rather than to
find it themselves.

Changes for the third edition

What has changed between the second and third editions of this book? The mag-
nitude of the changes is on a par with the changes between the first and second
editions. As we said about the second-edition changes, depending on how you
look at it, the book changed either not much or quite a bit.

A quick look at the table of contents shows that most of the second-edition chap-
ters and sections appear in the third edition. We removed two chapters and one
section, but we have added three new chapters and two new sections apart from
these new chapters.

We kept the hybrid organization from the first two editions. Rather than organiz-
ing chapters by only problem domains or according only to techniques, this book
has elements of both. It contains technique-based chapters on divide-and-conquer,
dynamic programming, greedy algorithms, amortized analysis, NP-Completeness,
and approximation algorithms. But it also has entire parts on sorting, on data
structures for dynamic sets, and on algorithms for graph problems. We find that
although you need to know how to apply techniques for designing and analyzing al-
gorithms, problems seldom announce to you which techniques are most amenable
to solving them.

Here is a summary of the most significant changes for the third edition:

* We added new chapters on van Emde Boas trees and multithreaded algorithms,
and we have broken out material on matrix basics into its own appendix chapter.

* We revised the chapter on recurrences to more broadly cover the divide-and-
conquer technique, and its first two sections apply divide-and-conquer to solve
two problems. The second section of this chapter presents Strassen’s algorithm
for matrix multiplication, which we have moved from the chapter on matrix
operations.

+ We removed two chapters that were rarely taught: binomial heaps and sorting
networks. One key idea in the sorting networks chapter, the 0-1 principle, ap-
pears in this edition within Problem 8-7 as the 0-1 sorting lemma for compare-
exchange algorithms. The treatment of Fibonacci heaps no longer relies on
binomial heaps as a precursor.

Preface

xvit

We revised our treatment of dynamic programming and greedy algorithms. Dy-
namic programming now leads off with a more interesting problem, rod cutting,
than the assembly-line scheduling problem from the second edition. Further-
more, we emphasize memoization a bit more than we did in the second edition,
and we introduce the notion of the subproblem graph as a way to understand
the running time of a dynamic-programming algorithm. In our opening exam-
ple of greedy algorithms, the activity-selection problem, we get to the greedy
algorithm more directly than we did in the second edition.

The way we delete a node from binary search trees (which includes red-black
trees) now guarantees that the node requested for deletion is the node that is
actually deleted. In the first two editions, in certain cases, some other node
would be deleted, with its contents moving into the node passed to the deletion
procedure. With our new way to delete nodes, if other components of a program
maintain pointers to nodes in the tree, they will not mistakenly end up with stale
pointers to nodes that have been deleted.

The material on flow networks now bases flows entirely on edges. This ap-
proach is more intuitive than the net flow used in the first two editions.

With the material on matrix basics and Strassen’s algorithm moved to other
chapters, the chapter on matrix operations is smaller than in the second edition.

We have modified our treatment of the Knuth-Morris-Pratt string-matching al-
gorithm.

We corrected several errors. Most of these errors were posted on our Web site
of second-edition errata, but a few were not.

Based on many requests, we changed the syntax (as it were) of our pseudocode.
We now use “="to indicate assignment and “=="to test for equality, just as C,
C++, Java, and Python do. Likewise, we have eliminated the keywords do and
then and adopted “//” as our comment-to-end-of-line symbol. We also now use
dot-notation to indicate object attributes. Our pseudocode remains procedural,
rather than object-oriented. In other words, rather than running methods on
objects, we simply call procedures, passing objects as parameters.

We added 100 new exercises and 28 new problems. We also updated many
bibliography entries and added several new ones.

Finally, we went through the entire book and rewrote sentences, paragraphs,
and sections to make the writing clearer and more active.

xViii

Preface

Web site

You can use our Web site, http:/mitpress.mit.edu/algorithms/, to obtain supple-
mentary information and to communicate with us. The Web site links to a list of
known errors, solutions to selected exercises and problems, and (of course) a list
explaining the corny professor jokes, as well as other content that we might add.
The Web site also tells you how to report errors or make suggestions.

How we produced this book

Like the second edition, the third edition was produced in ETEX 2¢. We used the
Times font with mathematics typeset using the MathTime Pro 2 fonts. We thank
Michael Spivak from Publish or Perish, Inc., Lance Carnes from Personal TeX,
Inc., and Tim Tregubov from Dartmouth College for technical support. As in the
previous two editions, we compiled the index using Windex, a C program that we
wrote, and the bibliography was produced with BIBTEX. The PDF files for this
book were created on a MacBook running OS 10.5.

We drew the illustrations for the third edition using MacDraw Pro, with some
of the mathematical expressions in illustrations laid in with the psfrag package
for ISTEX 2¢. Unfortunately, MacDraw Pro is legacy software, having not been
marketed for over a decade now. Happily, we still have a couple of Macintoshes
that can run the Classic environment under OS 10.4, and hence they can run Mac-
Draw Pro—mostly. Even under the Classic environment, we find MacDraw Pro to
be far easier to use than any other drawing software for the types of illustrations
that accompany computer-science text, and it produces beautiful output." Who
knows how long our pre-Intel Macs will continue to run, so if anyone from Apple
is listening: Please create an OS X-compatible version of MacDraw Pro!

Acknowledgments for the third edition

We have been working with the MIT Press for over two decades now, and what a
terrific relationship it has been! We thank Ellen Faran, Bob Prior, Ada Brunstein,
and Mary Reilly for their help and support.

We were geographically distributed while producing the third edition, working
in the Dartmouth College Department of Computer Science, the MIT Computer

We investigated several drawing programs that run under Mac OS X, but all had significant short-
comings compared with MacDraw Pro. We briefly attempted to produce the illustrations for this
book with a different, well known drawing program. We found that it took at least five times as long
to produce each illustration as it took with MacDraw Pro, and the resulting illustrations did not look
as good. Hence the decision to revert to MacDraw Pro running on older Macintoshes.

Preface Xix

Science and Artificial Intelligence Laboratory, and the Columbia University De-
partment of Industrial Engineering and Operations Research. We thank our re-
spective universities and colleagues for providing such supportive and stimulating
environments.

Julie Sussman, P.P.A., once again bailed us out as the technical copyeditor. Time
and again, we were amazed at the errors that eluded us, but that Julie caught. She
also helped us improve our presentation in several places. If there is a Hall of Fame
for technical copyeditors, Julie is a sure-fire, first-ballot inductee. She is nothing
short of phenomenal. Thank you, thank you, thank you, Julie! Priya Natarajan also
found some errors that we were able to correct before this book went to press. Any
errors that remain (and undoubtedly, some do) are the responsibility of the authors
(and probably were inserted after Julie read the material).

The treatment for van Emde Boas trees derives from Erik Demaine’s notes,
which were in turn influenced by Michael Bender. We also incorporated ideas
from Javed Aslam, Bradley Kuszmaul, and Hui Zha into this edition.

The chapter on multithreading was based on notes originally written jointly with
Harald Prokop. The material was influenced by several others working on the Cilk
project at MIT, including Bradley Kuszmaul and Matteo Frigo. The design of the
multithreaded pseudocode took its inspiration from the MIT Cilk extensions to C
and by Cilk Arts’s Cilk++ extensions to C++.

We also thank the many readers of the first and second editions who reported
errors or submitted suggestions for how to improve this book. We corrected all the
bona fide errors that were reported, and we incorporated as many suggestions as
we could. We rejoice that the number of such contributors has grown so great that
we must regret that it has become impractical to list them all.

Finally, we thank our wives—Nicole Cormen, Wendy Leiserson, Gail Rivest,
and Rebecca Ivry—and our children—Ricky, Will, Debby, and Katie Leiserson;
Alex and Christopher Rivest; and Molly, Noah, and Benjamin Stein—for their love
and support while we prepared this book. The patience and encouragement of our
families made this project possible. We affectionately dedicate this book to them.

THOMAS H. CORMEN Lebanon, New Hampshire
CHARLES E. LEISERSON Cambridge, Massachusetts
RONALD L. RIVEST Cambridge, Massachusetts
CLIFFORD STEIN New York, New York

February 2009

Contents

Preface xili

I Foundations

Introduction 3

1 The Role of Algorithms in Computing 5
1.1 Algorithms 5
1.2 Algorithms as a technology 7/

2 Getting Started 16
2.1 Insertion sort 16
2.2 Analyzing algorithms 23
2.3 Designing algorithms 29

3 Growth of Functions 43
3.1 Asymptotic notation 43
3.2 Standard notations and common functions 53

4 Divide-and-Conquer 65
4.1 The maximum-subarray problem 68
4.2 Strassen’s algorithm for matrix multiplication 75
4.3 The substitution method for solving recurrences 83
4.4 The recursion-tree method for solving recurrences 88
4.5 The master method for solving recurrences 93

* 4.6 Proof of the master theorem 97

5 Probabilistic Analysis and Randomized Algorithms 114
5.1 The hiring problem /14
5.2 Indicator random variables /8
5.3 Randomized algorithms /22
* 5.4 Probabilistic analysis and further uses of indicator random variables
130

vi Contents

Il Sorting and Order Statistics

Introduction 147

Heapsort 151

6.1 Heaps 151

6.2 Maintaining the heap property 154
6.3 Building aheap 156

6.4 The heapsort algorithm 759

6.5 Priority queues 162

Quicksort 170

7.1 Description of quicksort /70

7.2 Performance of quicksort 174

7.3 A randomized version of quicksort 179
7.4 Analysis of quicksort /80

Sorting in Linear Time 191

8.1 Lower bounds for sorting 191
8.2 Counting sort 194

8.3 Radix sort 197

8.4 Bucket sort 200

Medians and Order Statistics 213

9.1 Minimum and maximum 274

9.2 Selection in expected linear time 2/5
9.3 Selection in worst-case linear time 220

III Data Structures

10

11

Introduction 229

Elementary Data Structures 232

10.1 Stacks and queues 232

10.2 Linked lists 236

10.3 Implementing pointers and objects 24/
10.4 Representing rooted trees 246

Hash Tables 253

11.1 Direct-address tables 254
11.2 Hash tables 256

11.3 Hash functions 262
11.4 Open addressing 269
11.5 Perfect hashing 277

Contents

12

13

14

Binary Search Trees 286

12.1 What is a binary search tree? 286

12.2 Querying a binary search tree 289

12.3 Insertion and deletion 294

12.4 Randomly built binary search trees 299

Red-Black Trees 308

13.1 Properties of red-black trees 308
13.2 Rotations 372

13.3 Insertion 375

13.4 Deletion 323

Augmenting Data Structures 339

14.1 Dynamic order statistics 339

14.2 How to augment a data structure 345
14.3 Interval trees 348

IV Advanced Design and Analysis Techniques

15

16

17

Introduction 357

Dynamic Programming 359

15.1 Rod cutting 360

15.2 Matrix-chain multiplication 370

15.3 Elements of dynamic programming 378
15.4 Longest common subsequence 390
15.5 Optimal binary search trees 397

Greedy Algorithms 414

16.1 An activity-selection problem 4/5

16.2 Elements of the greedy strategy 423

16.3 Huffman codes 428

16.4 Matroids and greedy methods 437

16.5 A task-scheduling problem as a matroid 443

Amortized Analysis 451

17.1 Aggregate analysis 452
17.2 The accounting method 456
17.3 The potential method 459
17.4 Dynamic tables 463

viii Contents

V Advanced Data Structures

18

19

20

21

Introduction 481

B-Trees 484

18.1 Definition of B-trees 488

18.2 Basic operations on B-trees 491
18.3 Deleting a key from a B-tree 499

Fibonacci Heaps 505

19.1 Structure of Fibonacci heaps 507

19.2 Mergeable-heap operations 570

19.3 Decreasing a key and deleting anode 518
19.4 Bounding the maximum degree 523

van Emde Boas Trees 531

20.1 Preliminary approaches 532
20.2 A recursive structure 536
20.3 The van Emde Boas tree 545

Data Structures for Disjoint Sets 561

21.1 Disjoint-set operations 561

21.2 Linked-list representation of disjoint sets 564
21.3 Disjoint-set forests 568

21.4 Analysis of union by rank with path compression

573

VI Graph Algorithms

22

23

Introduction 587

Elementary Graph Algorithms 589

22.1 Representations of graphs 589

22.2 Breadth-first search 594

22.3 Depth-first search 603

22.4 Topological sort 612

22.5 Strongly connected components 615

Minimum Spanning Trees 624
23.1 Growing a minimum spanning tree 625
23.2 The algorithms of Kruskal and Prim 63/

Contents

24 Single-Source Shortest Paths 643
24.1 The Bellman-Ford algorithm 657
24.2 Single-source shortest paths in directed acyclic graphs 655
24.3 Dijkstra’s algorithm 658
24.4 Difference constraints and shortest paths 664
24.5 Proofs of shortest-paths properties 671

25 All-Pairs Shortest Paths 684
25.1 Shortest paths and matrix multiplication 686
25.2 The Floyd-Warshall algorithm 693
25.3 Johnson’s algorithm for sparse graphs 700

26 Maximum Flow 708
26.1 Flow networks 709
26.2 The Ford-Fulkerson method 714
26.3 Maximum bipartite matching 732
* 264 Push-relabel algorithms 736
* 26.5 The relabel-to-front algorithm 748

VII Selected Topics

Introduction 769

27 Multithreaded Algorithms 772
27.1 The basics of dynamic multithreading 774
27.2 Multithreaded matrix multiplication 792
27.3 Multithreaded merge sort 797

28 Matrix Operations 813
28.1 Solving systems of linear equations 8/3
28.2 Inverting matrices 827

28.3 Symmetric positive-definite matrices and least-squares approximation
832

29 Linear Programming 843
29.1 Standard and slack forms 850
29.2 Formulating problems as linear programs 859
29.3 The simplex algorithm 864
29.4 Duality 879
29.5 The initial basic feasible solution 886

Contents

30

31

32

33

34

35

Polynomials and the FFT 898

30.1 Representing polynomials 900
30.2 The DFT and FFT 906

30.3 Efficient FFT implementations 915

Number-Theoretic Algorithms 926

31.1 Elementary number-theoretic notions 927
31.2 Greatest common divisor 933

31.3 Modular arithmetic 939

31.4 Solving modular linear equations 946
31.5 The Chinese remainder theorem 950

31.6 Powers of an element 954

31.7 The RSA public-key cryptosystem 958
31.8 Primality testing 965

31.9 Integer factorization 975

String Matching 985

32.1 The naive string-matching algorithm 988
32.2 The Rabin-Karp algorithm 990

32.3 String matching with finite automata 995
32.4 The Knuth-Morris-Pratt algorithm 7002

Computational Geometry 1014

33.1 Line-segment properties 1015

33.2 Determining whether any pair of segments intersects
33.3 Finding the convex hull 7029

33.4 Finding the closest pair of points /039

NP-Completeness 1048

34.1 Polynomial time 7053

34.2 Polynomial-time verification 7061

34.3 NP-completeness and reducibility 1067
34.4 NP-completeness proofs 1078

34.5 NP-complete problems /086

Approximation Algorithms 1106

35.1 The vertex-cover problem 7708

35.2 The traveling-salesman problem /111

35.3 The set-covering problem 1117

35.4 Randomization and linear programming /23
35.5 The subset-sum problem /728

1021

Contents

VIII Appendix: Mathematical Background

Introduction 1143

A Summations 1145
A.1 Summation formulas and properties 1745
A.2 Bounding summations /49

B Sets, Etc. 1158
B.1 Sets 1158
B.2 Relations 7163
B.3 Functions 1166
B.4 Graphs 1168
B.5 Trees 1173

C Counting and Probability 1183

C.1 Counting 1183

C.2 Probability 1189

C.3 Discrete random variables 7196

C.4 The geometric and binomial distributions /201
* C.5 The tails of the binomial distribution 7208

D Matrices 1217
D.1 Matrices and matrix operations /217
D.2 Basic matrix properties /222

Bibliography 1231
Index 1251

