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Introduction

FROM SHIPS TO TOYS, FROM STEEL MILLS TO PHONOGRAPHS, AND WHEREVER ELECTRICAL
energy has teamed with mechanical motion, the impact of solid-state electronic con-
trol of electric motors has made itself felt. It is true that antennas were rotated, tools
were driven, and vehicles were electrically powered prior to the advent of thyristors,
power transistors, and sophisticated integrated-circuit modules. However, the im-
provements in precision, flexibility, reliability, and controllability have been so great
with the new devices and techniques, that we find ourselves involved with a new and
fascinating aspect of technology.

Electric motors, generators, and alternators (the so-called “dynamos” of yester-
year) assumed their roles as industrial “workhorses” during the latter portion of the
previous century and the early part of this century. Surprisingly, a perusal of texts
dating that far back can still yield useful information about starting, stopping, re-
versing, and stabilizing such machines. But continued reliance on these venerable
methods can only lead to technical obsolescence of machines and techniques. A new
era of motor control exerts new demands and, at the same time, stimulates new chal-
lenges and provides new opportunities.

When both power engineering and electronics were still in their early stages,
those with bold imaginations perceived the potential benefits that might result from
a merger of the two arts. A formidable deterrent to such mutuality between these
two electrical disciplines was the unreliability of then-available electronic devices
and components. During the 1930 to 1950 interim, the electronic control of motors
did make some headway as better tubes and components became available for such
applications. In particular, thyratrons and ignitrons attained popularity. It became
feasible to electronically control the speed of fractional-horsepower machines and,
to some extent, larger integral-horsepower machines. Significantly, some of these
circuit techniques are clearly recognizable as the predecessors of present-day solid-
state controllers.
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x Introduction

This obviously brings us to the solid-state chapter of electronic evolution. Ini-
tially, the invention of the transistor sparked a number of application efforts. With
the soon-to-follow development of power transistors, the direct control of larger
electromagnetic devices became possible. Also, the introduction and quick commer-
cialization of thyristors enabled the precise and efficient control of very large mo-
tors. Now, a plethora of solid-state devices have become available for arriving a wide
range of motor types and sizes; these include silicon NPN and PNP power transis-
tors, N and P channel power MOSFETs, power Darlingtons, germanium power tran-
sistors, IGBTs, GTOs, MCTs, and power op amps.

So much for the muscles for motor-control systems. Fortunately, technological-
evolution has also provided us with the brains to actuate these muscles in coordinated
precision. No end of dedicated ICs have been developed to time, automate, manipu-
late, and protect these motor-control systems. Both analog and digital techniques are
used; excellent control and regulation of motor operational-parameters can be real-
ized without extensive development-projects, or wasteful cut-and-try activities.

The motors, too, have participated in this evolution. The traditional motor-for-
mats, although remaining useful, have to a considerable extent given way to types
relying less upon mechanical commutation or conventional single or polyphase
power, but much more upon timed-pulses from the alluded “brainy” control-ICs.
Such motors exhibit attributes of the long-enduring dc and ac motors, but also pos-
sess unique advantages of cost, reliability, and controllability.

The foregoing matters lead very naturally to the final chapter of the treatise deal-
ing with electrically-powered automobiles. Therein, I endeavor to resolve some of the
controversies that have long plagued this area of electric-motor application. Interest-
ingly, all of the preceding chapters bear relevancy. The propulsion of the electric auto
can be provided by dc or ac motors, and by traditional or new-age motor formats. This
stems from the versatility of the aforementioned dedicated control-ICs.

Regardless of specific areas of interest, if you are technically-inclined, you
should find useful guidance to practical implementations of electric motors and their
control, but I hope that this book will also stimulate rewarding, experimentation and
creativity.

The following individuals and firms deserve thanks for their assistance and for
their contributions of electronic-control circuits and systems for electric motors:
Michael Apcar, President, Randtronics, Inc.; Michael P. Brown, President, ELECTRO
AUTOMOTIVE; W.C. Caldwell, Distributor Sales Administrator, Delco Electronics;
Walter B. Dennen, Manager, News and Information, RCA; Robert C. Dobkins, Manager
of Advanced Circuit Development, National Semiconductor Corp.; Norbert J. Ertel,
Marketing Analyst, Bodine Electric Co.; Forest B. Golden, Consulting Application En-
gineer, General Electric Co.; Alan B. Grebene, Vice President, Exar Integrated Sys-
tems, Inc.; Frank A. Leachman, Media Manager, Superior Electric Co.; Larry Steckler,
Editor-in-Chief & Publisher, Gernsback Publications, Inc.; Lothar Stern, Manager,
Technical Information Center, Motorola Semiconductor Products, Inc.

Irving M. Gottlieb
Redwood City, California
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1

Reconsiderations ot basic
motor and generator action

THE APPLICATION OF ELECTRONIC CONTROLS TO ELECTRIC MOTORS AND GENERATORS
has the appearance of a mere merger of two somewhat divergent practices of a com-
mon engineering discipline. It is, however, much more than this! It taxes the ingenu-
ity of the practical man and challenges the imagination of the theorist. Indeed, such
amerger has evolved as an excellent illustration of applied science. For instance, one
might consider such recent innovations as motors with superconducting field mag-
nets, homopolar machines with liquid-metal contacts, magnetohydrodynamic gener-
ators, commutatorless dc motors, printed-circuit motors, levitated induction drives
for transport vehicles and, of course, the application of solid-state devices to all
types of electric machines.

The nature of the new control techniques

As the author, I assume in this book that you have at least a basic knowledge of elec-
trical and electronic devices. Accordingly, I will not attempt to duplicate the con-
tents of the other books already available on electricity, magnetism, and electronics.

This chapter explores the known, with deliberate intent to invoke the unknown.
It touches on elemental notions to show how accepted principles band together to
produce useful hardware. Basic questions are raised, but the very contemplation
thereby initiated will, in ztself, constitute my objective. From this study, I hope you
will realize that electric machine technology, though rooted in the past, is destined
for a profuse blossoming in the future.

Let us commence with a discussion of a feature common to all motors that con-
vert electrical to mechanical energy—the phenomenon of action at a distance.

Action at a distance

One example of this phenomenon, which greatly perplexed yesterday’s scientists, is
that of a ferromagnetic object being physically acted upon by magnetic force. Forces
other than the magnetic kind also act upon objects or entities separated by a dis-
tance. Here, I can think of electrostatic, gravitational, molecular, and nuclear forces.
Electromagnetic waves, such as radiant light, might well be included, and there are
undoubtably others. For example, those versed in parapsychology often allege that

1



2 Reconsiderations of basic motor and generator action

physical objects can, under some circumstances, be acted upon by force fields ema-
nating from the mind. Although the manifestations mentioned are apparently di-
verse, they incorporate a common feature—action at a distance without need for
an intervening mediuwm. It was this latter aspect that inspired the postulate of the
“ether.” Supposedly, the ether was everywhere but it was elusive because of its ten-
uous nature—it had a viscosity of zero! Although endowed with the properties of
“nothingness,” it served as the medium of transmission for light and other electro-
magnetic radiation; that is, it supported wave motion. The static forces exerted by
magnets, by charged bodies, and by gravitation were not so glibly explained. Then,
and now, such forces were simply ascribed to “fields” and the role of the ether was
somewhat more nebulous.

The mathematicians next extended the concept of the field and endowed it with
properties of self~propagation, which eliminated the need for the ether. This new
concept came at a favorable time, because experiments carried out to detect the
presence of the ether were not successful. Besides, whether one comprehended the
mathematics or not, the notion of radiant energy traversing the vacuum of space did
not stretch the imagination any farther than the elder hypothesis. Fortunately, the
mathematical descriptions provided by Maxwell’s equations and by other theories
dealing with fields, harmonized with experimental investigations and facilitated the
development of practical devices. Nonetheless, the imaginative mind remains unde-
cided over the part played by the intervening space when any type of force exerts in-
fluence over a distance. If the influence manifests itself over a gap of true
“nothingness,” does this imply the propagation of particles of some sort between the
source of the action and that which is acted upon? This, too, was given much thought
by many brilliant minds. And, like the ether, we find that the emitted particles are
still with us, but dressed in a new style. For example, the prevailing concept of the
photon, the elemental carrier of radiant energy, postulates a rest mass of zero. Thus,
the ghost of the extinct ether returns to haunt us!

There is considerable scientific speculation that gravity, magnetism, and the elec-
tric field are somewhat different manifestations of a universal law of nature. The cou-
pling between magnetism and moving electric charges is evidenced by electric motors
and generators and by the myriad devices that exploit the phenomenon of electromag-
netic induction. It is easy to assume a matter-of-fact attitude regarding the relationships
between electricity and magnetism. However, it is instructive to reflect that these “sim-
ple” facts of technological life eluded the scientists of the nineteenth century until they
were experimentally observed and interpreted. In one case, Hans Christian Oerstead
recognized the significance of the deflection of a compass needle by a current-carrying
wire. In the other case, Michael Faraday was seeking a relationship between steady
magnetic fields and electric currents in stationary conductors. Although he found none,
he recognized the significance of currents induced in certain situations where relative
motion existed between the magnetic field and the conductor.

In our era, the assumed relationship of gravity to electricity and magnetism has
thus far been quite elusive. Despite the powerful concepts of relativity and quan-
tum physics, the relationship between gravity and other forces does not appear to
be strong. But perhaps history will repeat itself—a surprise observation might one
day be made of an unsuspected cause-and-effect relationship that will shed a new
light on the nature of gravitational force. Actual experiments are already being car-



Electrostatic force 3

ried out to detect and explain “gravity waves.” It is known that gravitational force
does not communicate its influence instantaneously. Like the forces of magnetic
and electric fields, gravitational influence cannot propagate through space faster
than the speed of light. And the force associated with the gravitational field, like
that of the magnetic and electric fields, diminishes inversely in proportion to the
square of the distance between two bodies, poles, or charges. Unlike the force fields
of magnetism and electricity, gravitational force produces only attraction, never re-
pulsion between bodies! Although this subject has been a favorite for science-fic-
tion writers, the quest for a method of reversing, or neutralizing, gravity is by no
means the exclusive indulgence of those who deal in fantasy.

Just as practical motors and generators have been profoundly influenced by re-
search in cryogenics and superconductivity, solid-state theory, plasma physics, and ma-
terials technology, subsequent progress in the development of a unified field theory can
be expected to manifest itself in improved hardware and new control techniques.
Surely, the harnessing of basic forces is what motors and generators are all about!

Electrostatic force

Pretend that our electrical technology exists and that you have a good grasp of it but
that, somehow, electric motors have not yet been developed. Given the assignment
to create such a device, how might you proceed? A reasonable way would probably
be to investigate forces capable of acting on physical materials of some kind. Then,
you would think of some way to produce torque, or a turning motion. This would
be an encouraging step, but the torque would also have to be continuous, so that a
constant rotation would ensue. However, the mere attainment of this objective might
not result in a practical motor. For example, the well-known novelty item, the ra-
diometer (Fig. 1-1), converts the energy of incident light photons to kinetic energy
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4 Reconsiderations of basic motor and generator action

by the rotation of its windmill-like blades. But only a feeble torque is developed in
such a device. It would be futile to provide the radiometer with a shaft so that work
could be performed. Perhaps such an approach might be put aside reluctantly be-
cause certain instrumental applications could be visualized. But for use in the envi-
ronment, this type of “motor action” does not appear promising.

You might next consider electrostatic force. Figure 1-2 displays the field pat-
terns of point charges. Figure 1-3 shows an electrostatic voltmeter. Here, the at-
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1-3 The electrostatic voltmeter.

traction of unlike charges is evidenced as usable “motor action” in this device. To be
sure, the rotation of the electrostatic voltmeter is not continuous, but perhaps this
can be arranged. Of course, the torque developed by this meter movement is still
woefully inadequate for the needs of industrial motive power. Maybe you would pon-
der whether an electrostatic motor could be devised to develop the turning power
needed.

Consider a current of one ampere. Such a current is readily produced by small
batteries and is safely carried by ordinary 18-gauge hookup wire. Now, one ampere
represents the flow past a point of approximately 3 x 10° electrostatic units of charge
per second. Because the charge of the electron is 4.8 x 10_, ; electrostatic units, it fol-
lows that one ampere corresponds also to 6.25 x 10! electrons per second. This
number of electrons is defined as the coulomb, so finally we say that one ampere of
current flows in a circuit when the rate of charge is one coulomb per second. Appar-
ently, the coulomb is 720t a wild concept described by fantastic numbers. In many or-
dinary electrical and electronic devices, you can expect to deal with currents ranging
from several tenths to several tens of coulombs per second.

Using Coulomb’s law, it is easy to show that if two metallic spheres, one cen-
timeter in diameter and separated by one meter, center to center, could somehow be
oppositely charged with one coulomb of electricity, they would develop the fantastic
attractive force of approximately one mizllion tons. The conditional “somehow” is
well used, for the potential difference developed by such an electrified system would
be in the hundreds of teravolts. Long before such an astronomically high voltage
could be brought into existence between the spheres, a cataclysmic lightning flash
would have disintegrated the apparatus. If you scale down the charges and alter the
geometrical configuration of the spheres, or plates, the best that can be accom-
plished falls miserably short of what is easily, compactly, and economically achieved
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when the basic motive force is derived from the interaction of magnetic fields. Frac-
tional-horsepower motors using electrostatic forces have been experimented with,
but they require many tens of thousands of volts, involve critical insulation tech-
niques, and show little indication of practicality.!

Although the idea of electrostatic force as the torque-producing source for mo-
tors was dispensed, there are many who remain intrigued with the fantastically pow-
erful force fields of electrons. Among these people, the feeling prevails that perhaps
a radically different technique might yet be found to use this elemental force of na-
ture to directly produce mechanical rotation at power levels suitable for industry.

A possible spur to the development of electrostatic motors is the great stride
that has been made in the transmission of very high dc voltage. Also, there are whole
new families of insulating materials that were nonexistent some years ago when in-
terest declined in electrostatic motive power. Of considerable relevance, also, is the
recently attained state of vacuum technology. The future might hold some interest-
ing surprises for those who view electrostatic motive power as a dead issue.

Consideration of the use of
magnets to achieve motor action

The general practical aspects of magnets are now well known; the considerable
forces of attraction and repulsion evident between the poles of strong magnets nat-
urally suggest the possibilities of motor action. Not only do ferromagnetic materials
have force fields available with reasonable shapes, they have permanent magneti-
zation as an added dividend. However, if you did not know otherwise, it would be
easy to cite reasons why the magnetization of magnets should be “used up” under
certain circumstances.

Magnetic lines of force surrounding bar magnets are shown in Fiig. 1-4. The mag-
nets behave as if such field lines had the following characteristics:

e Like poles repel; unlike poles attract.

e The forces of attraction and repulsion are the same when pole strengths, dis-
tances, and arrangements are the same.

e Pole pairs always exist in a magnet in such a way that one might say that the
lines leave from a north pole and enter at a south pole. There are no unipoles
n practical magnets.

¢ Lines of force never cross. In a space subjected to fields from more than one
source, a resultant field is produced, having a density and direction deter-
mined by the directions and strengths of the contributing fields.

¢ In the case of repulsion, it is more correct to speak of field deflection than of
neutralization. In other words, lines of force have their paths altered, but they
are not destroyed.

!Benjamin Franklin actually made an electrostatic motor! It produced rotation from the stored electrostatic energy

in a Leyden jar. A modernized version of this machine developed one-tenth horsepower when powered from a
30,000-volt electrostatic generator. Electrostatic motors must also consume current to produce useful torque.
The situation remains, as in Franklin’s day, tantalizingly suggestive, but generally impractical.
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¢ The lines of force surrounding a magnet mutually repel one another.

¢ Lines of force have been likened to rubber bands in that they seek the short-
est path. A somewhat better statement would be that they seek the easiest
magnetic path.

e Forces arising from magnetism obey the inverse square law.
Interestingly, there have been reports of discoveries that the magnetic field has
a particle nature. The search for the elusive magnetic monopole has apparently

been rewarded with success. Although this can have tremendous ramifications for
motor technology, the nature of practical implementations is not yet discernible.
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C. Attraction of dissimilar poles.

1-4 The field patterns associated with magnetic lines of force.



