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Preface

Problems linking the shape of a domain or the coefficients of an elliptic operator
to the sequence of its eigenvalues are among the most fascinating of mathematical
analysis. One of the reasons which make them so attractive is that they involve
different fields of mathematics: spectral theory, partial differential equations, ge-
ometry, calculus of variations .... Moreover, they are very simple to state and
generally hard to solve! In particular, one can find in the next pages more than 30
open problems!

In this book, we focus on extremal problems. For instance, we look for a
domain which minimizes or maximizes a given eigenvalue of the Laplace operator
with various boundary conditions and various geometric constraints. We also con-
sider the case of functions of eigenvalues. We investigate similar questions for other
elliptic operators, like Schrodinger, non-homogeneous membranes or composites.

The targeted audience is mainly pure and applied mathematicians, more
particularly interested in partial differential equations, calculus of variations, dif-
ferential geometry, spectral theory. More generally, people interested in properties
of eigenvalues in other fields such as acoustics, theoretical physics, quantum me-
chanics, solid mechanics, could find here some answers to natural questions. For
that purpose, I choose to recall basic facts and tools in the two first chapters
(with only a few proofs). In chapters 3, 4 and 5, we present known results and
open questions for the minimization problem of a given eigenvalue A\;(Q2) of the
Laplace operator with Dirichlet boundary conditions, where the unknown is here
the domain €2 itself. In chapter 6, we investigate various functions of the Dirichlet
eigenvalues, while chapter 7 is devoted to eigenvalues of the Laplace operator with
other boundary conditions. In chapter 8, we consider the eigenvalues of Schrédinger
operators: therefore, the unknown is no longer the shape of the domain but the
potential V. Chapter 9 is devoted to non-homogeneous membranes and chapter
10 to more general clliptic operators in divergence form. At last, in chapter 11, we
are interested in the bi-Laplace operator.

Of course no book can completely cover such a huge field of research. In mak-
ing personal choices for inclusion of material, I tried to give useful complementary
references, in the process certainly neglecting some relevant works. I would be
grateful to hear from readers about important missing citations.
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I would like to thank Benoit Perthame who suggested in September 2004
that I write this book. Many people helped me with the enterprise, answering
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Antonio Greco, Evans Harrell, Francois Murat, Edouard Oudet, Gerard Philippin,
Michel Pierre, Marius Tucsnak. I am pleased to thank them here.

Nancy, March 2006 Antoine Henrot



Symmet
G"é?{gi'alized
Quadrangles
Advisory Board
Luigi Ambrosio, Scuola Normale
Superiore, Pisa, Italy | ——

Leonid Bunimovich, Georgia Institute

of Technology, Atlanta, USA

Benoit Perthame, Ecole Normale Supérieure, Paris, France
Gennady Samorodnitsky, Comell University, Rodes Hall,
USA

Igor Shparlinski, Macquarie University, Sydney, Australia
Wolfgang Spréssig, TU Bergakademie Freiberg, Germany

This new series is designed to be a repository for up-to-date
research results which have been prepared for a wider audi-
ence. Graduates and postgraduates as well as scientists will
benefit from the latest developments at the research fron-

tiers in mathematics and at the "frontiers" between mathe-
matics and other fields like computer science, physics, biolo-
gy, economics, finance, etc. All volumes will be online availa-

Your Specialized

Publisher in
Mathematics

Birkhduser

For orders originating from all over the world

except USA/CanadalLatin America:

Birkhauser Verlag AG

/o Springer GmbH & Co
Haberstrasse 7

D-69126 Heidelberg

Fax: +49 /6221345 4 229
e-mail: birkhauser@springer.de
http:/Avww.birkhauser.ch

For orders originating in the
USA/Canada/Latin America:

Birkhauser

333 Meadowland Parkway
USA-Secaucus

NJ 07094-2491

Fax: +1/ 201 / 348 4505
e-mail: orders@birkhauser.com

ble at SpringerLink.

M Clark, J., Otago University, New Zealand / Lomp, C.,
Universidade di Porto, Portugal / Vanaja, N., Mumbai
University, India / Wisbauer, R., Universitat Dilsseldorf,
Germany

Lifting Modules

2006. 408 pages. Softcover
ISBN 3-7643-7572-8

Extending modules are generalizations of injective
modules and, dually, lifting modules generalize projective
supplemented modules. There is a certain asymmetry in
this duality. While the theory of extending modules is well
documented in monographs and text books, the purpose
of our monograph is to provide a thorough study of
supplements and projectivity conditions needed to
investigate classes of modules related to lifting modules.
The text begins with an introduction to small submodules,
the radical, variations on projectivity, and hollow
dimension. The subsequent chapters consider preradicals
and torsion theories (in particular related to small
modules), decompositions of modules (including the
exchange property and local semi-T-nilpotency),
supplements in modules (with specific emphasis on
semilocal endomorphism rings), finishing with a long

chapter on lifting modules, leading up their use in the
theory of perfect rings, Harada rings, and quasi-Frobenius
rings.

Most of the material in the monograph appears in book
form for the first time. The main text is augmented by a
plentiful supply of exercises together with comments on
further related material and on how the theory has
evolved.

M Zaharopol, R., Mathematical Reviews, Ann Arbor,
USA

Invariant Probabilities of Markov-Feller Operators
and Their Supports

2005. 120 pages. Softcover. ISBN 3-7643-7134-X

In this book invariant probabilities for a large class of
discrete-time homogeneous Markov processes known as
Feller processes are discussed. These Feller processes
appear in the study of iterated function systems with
probabilities, convolution operators, certain time series,
etc. Rather than dealing with the processes, the transition
probabilities and the operators associated with these
processes are studied.



I De Bruyn, B., Ghent University, Ghent, Belgium
Near Polygons
2006. 276 pages. Softcover. ISBN 3-7643-7552-3

Near polygons were introduced about 25 years ago and
studied intensively in the 1980s. In recent years the subject
has regained interest. This monograph gives an extensive
overview of the basic theory of general near polygons.

The first part of the book includes a discussion of the
classes of dense near polygons, regular near polygons, and
glued near polygons. Also valuations, one of the most
important tools for classifying dense near polygons, are
treated in detail. The second part of the book discusses
the classification of dense near polygons with three points
per line.

The book is self-contained and almost all theorems are
accompanied with proofs. Several new results are
presented. Many known results occur in a more general
form and the proofs are often more streamlined than their
original versions. The volume is aimed at advanced
graduate students and researchers in the fields of
combinatorics and finite geometry.

M Kasch, F., Universitat Miinchen, Germany /
Mader, A., Hawaii University

Rings, Modules, and the Total
2004. 148 pages. Softcover. ISBN 3-7643-7125-0

In a nutshell, the book deals with direct decompositions of
modules and associated concepts. The central notion of
“partially invertible homomorphisms”, namely those that
are factors of a non-zero idempotent, is introduced in a
very accessible fashion. Units and regular elements are
partially invertible. The “totalconsists of all elements that
are not partially invertible. The total contains the radical
and the singular and cosingular submodules, but while the
total is closed under right and left multiplication, it may
not be closed under addition. Cases are discussed where
the total is additively closed. The total is particularly suited
to deal with the endomorphism ring of the direct sum of
modules that all have local endomorphism rings and is
applied in this case. Further applications are given for
torsion-free Abelian groups.

Your Specialized
Publisher in
Mathematics

Birkhduser

M Krausshar, R.S., Ghent University, Ghent, Belgium

Generalized Analytic Automorphic Forms in
Hypercomplex Spaces

2004. 182 pages. Softcover. ISBN 3-7643-7059-9

This book describes the basic theory of
hypercomplex-analytic automorphic forms and functions
for arithmetic subgroups of the Vahlen group in higher
dimensional spaces.

Hypercomplex analyticity generalizes the concept of
complex analyticity in the sense of considering
null-solutions to higher dimensional Cauchy-Riemann type
systems. Vector- and Clifford algebra-valued Eisenstein
and Poincaré series are constructed within this framework
and a detailed description of their analytic and number
theoretical properties is provided. In particular, explicit
relationships to generalized variants of the Riemann zeta
function and Dirichlet L-series are established and a
concept of hypercomplex multiplication of lattices is
introduced.

Applications to the theory of Hilbert spaces with
reproducing kernels, to partial differential equations and
index theory on some conformal manifolds are also
described.

M Thas, K., Ghent University, Ghent, Belgium
Symmetry in Finite Generalized Quadrangles
2004. 240 pages. Softcover. ISBN 3-7643-6158-1

In this monograph finite generalized quadrangles are
classified by symmetry, generalizing the celebrated
Lenz-Barlotti classification for projective planes. The book
is self-contained and serves as introduction to the
combinatorial, geometrical and group-theoretical concepts
that arise in the classification and in the general theory of
finite generalized quadrangles, including automorphism
groups, elation and translation generalized quadrangles,
generalized ovals and generalized ovoids, span-symmetric
generalized quadrangles, flock geometry and property (G),
regularity and nets, split BN-pairs of rank 1, and the
Moufang property.



Contents

Preface

1

Eigenvalues of elliptic operators

1.1 Notation and prerequisites . . . . . . . . .. .. ... ...
1.1.1 Notation and Sobolev spaces . . . .. ... ... ......
1.1.2 Partial differential equations . . . .. . .. ... ... ...

1.2 Eigenvalues and eigenfunctions . . . . . ... ... ... ......
1.2.1 Abstract spectral theory . . . . . . ... ... ... ... ..
1.2.2  Application to elliptic operators . . . . .. ... ... ...
1.2.3 First Properties of eigenvalues . . .. ... ... .. .. ..
1.2.4 Regularity of eigenfunctions . . . . . .. ... ... ... ..
1.2.5 Someexamples . . . . . . . .. .. ...
1.2.6 Fredholm alternative . . . . . . . . ... .. ... .. ....

1.3 Min-max principles and applications . . . . . . ... ... ... ..
1.3.1 Min-max principles . . . . . . . .. ... L0
1.3.2 Monotonicity . . . . . . ..
1.3.3 Nodaldomains . . . . . . ... ... ... ...

1.4 Perforateddomains . . . . . . .. . ... ... e

Tools

2.1 Schwarz rearrangement . . . . . . . . ... ...

2.2 Steiner symmetrization . . . . . . ... ...
2.2.1 Definition . . . . . ...
2.2.2 Properties . . . . . ... e
2.2.3 Continuous Steiner symmetrization . . . . . . . .. .. ...

2.3 Continuity of eigenvalues . . . . . .. .. ... ... ........
231 Introduction : : s s ¢ 22 o 6 G w o G0 5 6 5 2 0 b o8 e
2.3.2 Continuity with variable coefficients . . . . . ... ... ..
2.3.3 Continuity with variable domains (Dirichlet case) . . . . . .
2.3.4 The case of Neumann eigenvalues . . . . . . .. ... .. ..

2.4 Two general existence theorems . . . . . . .. ... ... ......

2.5 Derivatives of eigenvalues . . . . . . ... ... ... ........



vi

2.5.1 Introduction . . ... ... .. ... ... .. ..
2.5.2 Derivative with respect to the domain . . . . . .
2.5.3 Case of multiple eigenvalues . . . . . .. .. ...
2.5.4 Derivative with respect to coefficients . . . . . .

3 The first eigenvalue of the Laplacian-Dirichlet

3.1
3.2
3.3

3.4
3.5

Introduction . . . . . . .. .. . L Lo
The Faber-Krahn inequality . . . . .. ... . ... ...
The case of polygons . . . . . .. ... ... .. .....
3.3.1 Anexistenceresult . . .. . ... ... ... ..
332 Thecases N =3,4 . ... ... .. ... .....
3.3.3 A challenging open problem . . . . ... .. ...
Domainsinabox . . . . ... ... ... ... ... ..
Multi-connected domains . . . . . .. .. ... L.

4 The second eigenvalue of the Laplacian-Dirichlet

4.1

4.2

Minimizing Ag . . . . . ..o
4.1.1 The Theorem of Krahn-Szegé . . . . . . .. ...
4.1.2 Case of a connectedness constraint . . . . . . ..
A convexity constraint . . . . .. ... ... L. L.
4.2.1 Optimality conditions . . . .. .. ... ... ..

4.2.2 Geometric properties of the optimal domain

4.2.3 Another regularity result . . ... ... ... ..

5 The other Dirichlet eigenvalues

5.1
5.2
5.3

5.4

Introduction . . . . . ... ... L.
Connectedness of minimizers . . . ... ... ... ...
Existence of a minimizer for A3 . . . . .. ... ... ..
5.3.1 A concentration-compactness result . . . . ...
5.3.2 Existence of a minimizer . . . . . ... ... ...
Case of higher eigenvalues . . . . ... ... ... ....

6 Functions of Dirichlet eigenvalues

6.1
6.2

6.3

6.4

Introduction . . . . . . ... Lo
Ratio of eigenvalues . . . . ... ... .. ........
6.2.1 The Ashbaugh-Benguria Theorem . . ... ...
6.2.2 Someotherratios. . . ... .. ... .......
6.2.3 A collection of open problems . . . . .. ... ..
Sums of eigenvalues . . . ... ... ... ... ... ..
6.3.1 Sums of eigenvalues . . .. ... .. .. .....
6.3.2 Sumsofinverses . .. ... ... ... ......
General functions of Ay and Ao . . . . . . ... ... ..
6.4.1 Description of the set £ = (A1,X2) . . . .. ...
6.4.2 Existence of minimizers . . .. .. ... .....

Contents



Contents

7 Other boundary conditions for the Laplacian
7.1 Neumann boundary condition . . . . . .. ... ... ... ... ..
7.1.1 Introduction . . . . . .. ... L
7.1.2 Maximization of the second Neumann eigenvalue . . . . . .
7.1.3 Some other problems . . . . . . .. ... ...
7.2 Robin boundary condition . . . . . .. ... Lo
721 TIntroduction & cswwwas ¢ 38 835 353 gumavsmasms
7.2.2 The Bossel-Daners Theorem . . . . . . .. ... ... ....
7.2.3 Optimal insulation of conductors . . . . . . . ... ... ..
7.3 Stekloff eigenvalue problem . . . . .. ... 0oL

8 Eigenvalues of Schrodinger operators

81 Infroduction.. : : « s s e s s s e s s 55 3533 s nsbossenasd
81.1 Notation. . . . . . . . . . ..
8.1.2 A general existenceresult . . . . ... ... .. ... ...

8.2 Maximization or minimization of the first eigenvalue . . . . . . ..
8.2.1 Introduction . . . .. .. ... ...
8.2.2 The maximization problem . . .. ... ... ... .....
8.2.3 The minimization problem . . .. .. .. ... .. .....

8.3 Maximization or minimization of other eigenvalues . . . . . .. ..

8.4 Maximization or minimization of the fundamental gap Ao — \;
8.4.1 Introduction . . . .. .. ... .. ... ..
8.4.2 Single-well potentials . . . . . . .. ... ... ... ...
8.4.3 Minimization or maximization with an L constraint
8.4.4 Minimization or maximization with an LP constraint . . . .

8.5 Maximization of ratios . . . . .. ... ..
8.5.1 Introduction . . . .. .. ... ...
8.5.2 Maximization of A\a(V)/A;(V) in one dimension . . . . . . .
8.5.3 Maximization of A, (V)/A1(V) in one dimension . . .. ..

9 Non-homogeneous strings and membranes
9.1 Introduetion.. ; « « + s 15« s prm B B EE B K s F 5 5§ 45§ B & a
9.2 Existenceresults . . .. ... ... ...
9.2.1 A first general existence result . . . .. ... ... ... ..
9.2.2 A more precise existence result . . . . ... ... ...
9.2.3 Nonlinear constraint . . . . . . .. .. ... .. .......
9.3 Minimizing or maximizing A\;(p) in dimension 1 . . . . . . . .. ..
9.3.1 Minimizing Ag(p) . - .« . . ..o
9.3.2 Maximizing A\g(p) . . . . . ..
9.4 Minimizing or maximizing Ax(p) in higher dimension . . . . . . . .
9.4.1 Caseofaball . . ... ... ... ... ... ... ... ...
9.4.2 Generalcase . . ... ... ...

vii

101
101
101
102
104
106
106
107
110
113

117
117
117
119
119
119
119
123
125
127
127
127
131
134
136
136
136
137



viii Contents

10 Optimal conductivity 159
10.1 Introduction . . . . . . . . . . ..o e 159
10.2 The one-dimensional case . . . . . . . . . . . . .. ... 160

10.2.1 A general existenceresult . . . . . .. ... ... L. 160
10.2.2 Minimization or maximization of \g(o) . . . . . . ... .. 161
10.2.3 Case of Neumann boundary conditions . . . . . . .. .. .. 163
10.3 The general case . . . . . . . . . . .. . e 165
10.3.1 The maximization problem . . . . ... ... .. ... ... 165
10.3.2 The minimization problem . . .. ... ... ... ..... 168

11 The bi-Laplacian operator 169
11.1 Introduction . . . . . . . . . ... 169
11.2 The clamped plate . . . . . . . . . .. .. ... .. .. ....... 169

11.2.1 History . . . . . . . . e 169
11.2.2 Notation and statement of the theorem . . . ... ... .. 170
11.2.3 Proof of the Rayleigh conjecture in dimension N =2,3 . . 171
11.3 Bucklingofaplate . . . . . ... ... ... .. 174
11.3.1 Imtroduction . . . .. .. ... ... ... ... ... ... 174
11.3.2 The case of a positive eigenfunction . . .. ... ... ... 175
11.3.3 Anexistenceresult . . . . . .. .. ... ... ... ... .. 177
11.3.4 The last step in the proof . . . . . ... ... ... ... .. 178
11.4 Some other problems . . . . . . . . ... ... ... ... ... ... 181
11.4.1 Non-homogeneous rod and plate . . . .. ... ... ... .. 181
11.4.2 The optimal shape of a column . . . . . ... ... ... .. 183
References 187

Index 199



Chapter 1

Eigenvalues of elliptic operators

1.1 Notation and prerequisites

In this section, we recall the basic results of the theory of elliptic partial differential
equations. The prototype of elliptic operator is the Laplacian, but the results that
we state here are also valid for more general (linear) elliptic operators. For the basic
facts we recall here, we refer to any textbook on partial differential equations and
operator theory. For example, [36], [58], [75], [83] are good standard references.

1.1.1 Notation and Sobolev spaces

Let © be a bounded open set in RY. We denote by L?(Q) the Hilbert space
of square summable functions defined on © and by H'(Q) the Sobolev space of
functions in L?(Q2) whose partial derivatives (in the sense of distributions) are in
L2(Q):

ou

HY(Q) := {u € L*(Q) such that €L*),i=1,2,...,N}.

This is a Hilbert space when it is endowed with the scalar product
(u,v) 1 = / w(x)v(z)dr + / Vu(z).Vu(z) de
Q Q

and the corresponding norm:

lu|lgr == (/Qu(al:)2 dz + /Q|Vu(x)|2 d:c) v .
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In the case of Dirichlet boundary conditions, we will use the subspace H{ () which
is defined as the closure of C> functions compactly supported in € (functions in
Cse(9)) for the norm || ||z It is also a Hilbert space. At last, H'(£2) denotes
the dual space of H}(€2). For some non-linear problems, for example when we are
interested in the p-Laplace operator, it is more convenient to work with the spaces
L?,p > 1 instead of L2. In this case, the Sobolev spaces, defined exactly in the
same way, are denoted by W1P(2) and WO1 "P(Q) respectively. These are Banach
spaces.

When Q is bounded (or bounded in one direction), we have the Poincaré
inequality:

3C = C(Q) such that Yu € Hy (), / u(z)?de < C / |Vu(z)|? dz . (1.1)
Q Q

Actually the constant C' which appears in (1.1) is closely related to the eigenvalues
of the Laplacian since we will see later (cf (1.36)) that the best possible constant C
is nothing other than 1/A;(Q) where A1 () is the first eigenvalue of the Laplacian
with Dirichlet boundary conditions.

By definition, H3(£2) and H!(Q) are continuously embedded in L?(Q), but
we will need later a compact embedding. This is the purpose of the following
theorem.

Theorem 1.1.1 (Rellich).
e For any bounded open set Q, the embedding H}(S)) — L?(Q) is compact.

o IfQ is a bounded open set with Lipschitz boundary, the embedding H'(Q2) —
L%(Q) is compact.

Remark 1.1.2. We can weaken the assumption of Lipschitz boundary but not too
much, see e.g. the book [148] for more details.

1.1.2 Partial differential equations
Elliptic operator

Let a;;j(x), i,j = 1,..., N be bounded functions defined on 2 and satisfying the
usual ellipticity assumption:

Ja > 0, such that V€ = (&1,&2,...,&n) ERN, Vz € Q

Z%:l aij(T)&:&5 > alE|? (1.2)

where [£| = (ff +& 4+ 612\,)1/2 denotes the euclidean norm of the vector €.
We will also assume a symmetry assumption for the a;; namely:

Ve e Q,Vi,j a;i(z) =aji(z) . (1.3)
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Let ag(x) be a bounded function defined on €. We introduce the linear elliptic
operator L, defined on H'(2) by:

= B ou
7,7=1

(derivatives are to be understood in the sense of distributions). The prototype of

elliptic operator is the Laplacian:

N
0%u

_Au=-—S 22
: 2

e
=1 6 &

(1.5)

which will be considered in the main part of this book (chapters 3 to 7). In chapter
8, we consider the Schrodinger operator Lyu = —Au+V(z)u where V' (the poten-
tial) is a bounded function, while chapters 9 and 10 deal with more general elliptic
operators. In that case, we will keep the notation L when we want to consider
general operators given by (1.4). At last, in chapter 11, we consider operators of
fourth order.

Remark 1.1.3. Let us remark that, since we are only interested in eigenvalue
problems, we do not put any sign condition on the function ag(x) which appears
in (1.4). Indeed, since ap(z) is bounded, we can always replace the operator L by
L+ (|lao||oo + 1)1Id, i.e. replace the function ag(z) by ao(z) + ||aolleo + 1 if we need
a positive function in the term of order 0 of the operator L. For the eigenvalues,
that would just induce a translation of ||ag||s + 1 to the right.

Dirichlet boundary condition

Let f be a function in L?(2). When we call u a solution of the Dirichlet problem

R 5)
we actually mean that u is the unique solution of the variational problem
u € H}(Q) and Vv € H} (D),
{ SN fy (@) 2 de + [ ao(@)u(e)v(e) dz = [, f@)(@)de. T

Existence and uniqueness of a solution for problem (1.7) follows from the Lax-
Milgram Theorem, the ellipticity assumption (1.2) and the Poincaré inequality
(1.1). Note that, according to Remark 1.1.3, we can restrict ourselves to the case
aop(z) > 0. In the sequel, we will denote by AP (or AP(Q) when we want to
emphasize the dependence on the domain 2) the linear operator defined by:

APLIAQ) - HAQ) C LAQ),

1.
f +— wsolution of (1.7). (18}
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Neumann boundary condition

In the same way, if f is a function in L?(£2), we will also consider u a solution of
the Neumann problem

Lu f inQ,
N _Ou .
Zi,j:l Aij g M 0 on 902

(1.9)

(where n stands for the exterior unit normal vector to 92 and n; is its ith coor-
dinate). For example, when L = —A, the boundary condition reads (formally)

Ju

on
It means that u is the unique solution in H'(2) of the variational problem

u € H(R2) and Yv € HY(Q),

{ St Joaii(@) 2 2 do+ [y ao(zu(@)(e) de = f f@p(e)de . (10

Existence and uniqueness of a solution for problem (1.10) follows from the Lax-
Milgram Theorem, the ellipticity assumption (1.2) and the fact that we can assume
that ag(x) > 1 (according to Remark 1.1.3). In the sequel, we will denote by AY
the linear operator defined by:

AN I2(Q) —  HY(Q) C L2(Q),

1.11
f +— wsolution of (1.10). (1.11)

Remark 1.1.4. We will also consider later, for example in chapter 7, other kinds
of boundary conditions like Robin or Stekloff boundary conditions.

1.2 Eigenvalues and eigenfunctions

1.2.1 Abstract spectral theory

Let us now give the abstract theorem which provides the existence of a sequence
of eigenvalues and eigenfunctions. Let H be a Hilbert space endowed with a scalar
product (.,.) and recall that an operator T is a linear continuous map from H into
H. We say that:

e T is positive if, Vo € H, (Tz,z) > 0,
e T is self-adjoint, if Vz,y € H, (Tx,y) = (x, Ty),

e T'is compact, if the image of any bounded set is relatively compact (i.e. has
a compact closure) in H.
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Theorem 1.2.1. Let H be a separable Hilbert space of infinite dimension and T' a
self-adjoint, compact and positive operator. Then, there exists a sequence of real
positive eigenvalues (vyp), n > 1 converging to 0 and a sequence of eigenvectors
(zn), n > 1 defining a Hilbert basis of H such that Vn, Tz, = Vp Tp.

Of course, this theorem can be seen as a generalization to Hilbert spaces of the
classical result in finite dimension for symmetric or normal matrices (existence of
real eigenvalues and of an orthonormal basis of eigenvectors).

1.2.2 Application to elliptic operators
Dirichlet boundary condition

We apply Theorem 1.2.1 to H = L?(f2) and the operator A? defined in (1.8).
e AD is positive: let f € L%(2) and u = AP f be the solution of (1.7). We get

(f, AL f) = /f(z dw—Z/a” g—za—%d +/Q o(x)u?(z) da .

1;9=1

Now, we recall that ap(x) can be taken as a positive function and then the
ellipticity condition (1.2) yields the desired result. Moreover, we see that
(f, AP f) > 0 as soon as f # 0 (strict positivity).

o AP is self-adjoint: let f,g € L?(Q2) and u = AP f, v = AP g. We have:

/ f@)v(z)dz = Z / e gﬁ (%”du / ao(z)u(z)v(z)de

2;7=1

(1.12)
Now, according to the symmetry assumption (1.3) and the equation (1.7)
satisfied by v, the right-hand side in (1.12) is equal to [, u(z)g(z)dr =

(A7 f,9)-
° Af is compact: it is an immediate consequence of the Rellich Theorem 1.1.1.

As a consequence of Theorem 1.2.1, there exists (u,,) a Hilbert basis of L?() and

a sequence v, > 0, converging to 0, such that Af’ Uy, = Up Up. Actually, the v, are

positive, since the strict positivity of AP yields vy ||up||pe = (un, AP u,) > 0.
Coming back to (1.7), we see that u,, satisfies, Vv € H3(2):

e Z / am(x)a“" ﬁdﬂ /Q o(@)un(@)v(z) da | = /Q un(@)0(z) do

7,7=1

which means )
Lu,=—u,.

V’!L

Setting A, = —, we have proved:



