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INTRODUCTION

The aim of this book is to present classical electromagnetic theory, which includes
electromagnetic fields and waves, in a modern way suitable for application in engineering
problems and research. It has been written with the intention of serving as a resource to
scientists and engineers, and as a textbook and source of knowledge in the study of elec-
trical engineering. This book may be utilised as a textbook in advanced undergraduate and
postgraduate courses on electromagnetic fields and waves in engineering universities,
especially in electrical engineering faculties.

Electromagnetism is a fundamental topic with a variety of different applications. Its
inherent complexity results in the need for usage of sophisticated mathematical proce-
dures. Therefore, we assume that the reader has a knowledge of vector calculus, differen-
tial and integral equations and matrix algebra, together with a basic knowledge of electric-
ity and magnetism. The mathematical prerequisites are summarised in the appendices.

Classical electromagnetic theory has been founded on a macroscopic approach that
enables the neglecting of the granular structure of matter and charge. We may summarise
all knowledge about macroscopic electricity and magnetism using only a few equations
and definitions. Accordingly, our approach to problems in electrical engineering has
mostly been deductive. Everything originates from Maxwell’s equations. Therefore,
within this book, we have not followed a historical sequence, but have chosen a logical
sequence of subject presentation.

In the first chapter, we start by using Maxwell’s equations as postulates upon which
the entirety of classical electromagnetic theory has been based. Initially, the study of the
basic laws of electromagnetism is restricted to those in free space. After that we adjust
these laws to their application in materials.

The introduction of new supplementary functions known as electromagnetic poten-
tials to represent the field is the subject of the second chapter. These mathematical func-
tions, called vector and scalar potentials, are introduced in accordance with Maxwell’s
equations and their usage significantly simplifies the analysis of electromagnetic fields.

Electromagnetic energy is tackled in the third chapter by analysing the power an
electromagnetic field delivers to charge moving in free space. Afterwards, we include the
charge on which the macroscopic model of a material has been built. The resulting equa-
tion of energetic balance, known as Poynting’s theorem, will be our guide in establishing
the different forms of energy stored and transmitted by means of an electromagnetic field
in both free space and a material.

In continuation, we shall develop the application of this theory to solutions of prob-
lems in electromagnetism. The simplest problems involve static fields, where field quanti-
ties are independent of time. So, in the fourth chapter, we go on to analyse problems in a
static electric field caused by charge at rest. Special attention will be paid to the analytical
solution procedures used for solving static electric fields, i.e. the direct solutions of



vi

Laplace’s equation by a separation of variables, the solution of problems in unbounded
space and a determination of Green’s functions by the method of images.

The next logical step in the study of electromagnetism is the analysis of an electro-
magnetic field caused by charge in uniform motion. The fundamental characteristic of
such a field is that it can be split into two independent fields: a static current and static
magnetic field. In the fifth chapter, we shall study a static current field in a conductive
material and prove its analogy with a static electric field.

The fundamental characteristics of a static magnetic field are described at the begin-
ning of the sixth chapter. In continuation, we look into how to solve problems in current-
free regions by means of an antipotential, and how to solve problems relating to given
currents in an unbounded space by means of the magnetic vector potential. We shall solve
problems associated with given distributions of current in a bounded space by application
of the method of images.

Fields in which we may neglect displacement currents are called quasi-static electro-
magnetic fields. In the seventh chapter, we shall describe a reduced system of Maxwell's
equations and derive diffusion equations for field quantities in such a field. Afterwards,
we shall introduce a phasor notation which greatly simplifies the solution of sinusoidal
fields. The solution of quasi-static field problems is arranged into two classes: problems
involving conductors of large thickness and unknown current distribution, and problems
involving thin conductors and uniformly distributed currents.

In the eighth chapter, we shall study the propagation of homogeneous transverse plane
waves through conductive materials and dielectrics. The phenomenon of dispersion of a
wave is analysed in both dielectrics and metals. Afterwards, we go on to analyse the
incidence of electromagnetic waves on a plane boundary between two materials. The
propagation of guided plane waves is applied in the analysis of transmission lines,
waveguides and resonant cavities. Finally, we study the Hertz dipole and a linear antenna
in an unbounded space as sources of radiation.

The finite element method, which is a wide-spread numerical tool for solving field
problems, is described in the ninth chapter. We have applied a step-by-step approach
based on describing the solving of actual electromagnetic problems. We begin with a
detailed description of all the essential steps needed to be taken in the solution of simple,
two-dimensional static problems. In continuation, we outline non-linear problems and
finally we describe the solving of dynamic quasi-static fields.

The method of moments is introduced at the beginning of the tenth chapter. After-
wards, we describe the application of this method to the solution of three-dimensional
static electric field problems and the scattering of electromagnetic waves. Finally, we go
on to describe thin-wire structures, introduce Pocklington’s equation and finally show the
application of the method of moments to the solution of radiation problems.

Throughout this book, we have presented a lot of elaborate examples that explain the
introduced methods and concepts in detail. These examples were solved and graphical
presentations were generated using the programming system Mathematica®.

Zagreb, June 2000. Zijad Haznadar
Zeljko Stih



To:
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Alemka and Vilim
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1. THE ELECTROMAGNETIC FIELD

The basic laws of electromagnetic theory were founded at the beginning of the nine-
teenth century. In 1862, James Clerk Maxwell (1831 - 1879) expressed them in the form
of a harmoniously coupled set of equations. Since then we have used Maxwell’s equations
for the precise mathematical modelling of macroscopic electromagnetic phenomena.
These fundamental equations of classical electromagnetic theory describe the physical
properties of an electromagnetic field and connect them with the charges and currents
which represent sources.

The approach to the theory of electromagnetic fields applied in this book is a deduc-
tive one, contrary to the usual historical approach. It starts with a presentation of the
fundamental postulates focussed upon in Maxwell’s equations that completely covers the
results of experimental research over many years, as well as research of electromagnetic
phenomena. Subsequently, using these postulates as laws of electromagnetism, we shall
derive and thus describe the mathematical and physical properties of electromagnetic
fields and waves.

Originally, studies of electromagnetic theory tended to develop an “acting at a dis-
tance” concept, meaning that the forces acting on a particular charge or current element
were taken to be directly caused by forces on that charge or current element resulting from
all other sources. By contrast, Maxwell accepted Faraday’s ideas. Michael Faraday
(1791 - 1867) introduced the idea of an electric field that exists at all points of the media
surrounding the source charge. He presented a field in analogy to stresses in elastic mate-
rials and called the media aether. By the introduction of “displacement currents”,
Maxwell completed and mathematically formulated a unique theory of electromagnetic
ficlds. He wrote his classic equations in 1862.

In this chapter, we shall define electric and magnetic fields by means of the law for
Lorentz force (Hendrik Antoon Lorentz, 1853 - 1928) separately from the fundamental
postulates of electromagnetic fields. Initially, the study of the basic laws of electromagne-
tism will be restricted to those in free space. After that we shall adjust these laws to their
application in materials. We shall analyse the macroscopic behaviour of fields in conduc-
tors, dielectric and magnetic materials, thus postulating that the influence of polarised and
magnetised materials on the laws of electromagnetic fields can be modelled by the addi-
tion of polarized and magnetized charge and currents to free charge and currents already
existing within the fundamental laws.



2 1.1. A presentation of an electromagnetic field

1.1. A PRESENTATION OF AN ELECTROMAGNETIC
FIELD

For our purpose, we can define a field as a set of values associated to every point of a
specific region that defines the acting of a particular quantity in the region. Accordingly,
if a quantity is associated with every point of the region and if the changing in time and
space of this quantity is defined by laws expressed as functions of space and time coordi-
nates, that field is associated with the region.

In the study of classical electromagnetism in this book, we shall analyse scalar and
vector fields in three-dimensional Euclidian space. We shall study static and time-depend-
ent dynamic fields.

It is very important to note that an electromagnetic field is defined by a set of funda-
mental laws of physics that can be expressed in mathematical form by differential equa-
tions in three-dimensional space and time. Differential equations join the character of a
field at a particular point to those of other fields and sources at the same point independ-
ently of causes placed everywhere else. Hence the fact that the character of an electromag-
netic field depends directly upon the sort and properties of the material at a given point
and in its enclosure. Consequently we can analyse the general features of various fields in
some bounded region of space without any interest in the state in space outside of the
chosen region. This is one of the fundamental characteristics of Faraday’s and Maxwell’s
approach to electromagnetism.

1.1.1. Definitions of the fields E and B

We associate the forces observed in electromagnetic experiments with the existence
of an electric charge and its motion. We can represent the distribution of charge and its
motion as either a cause or a source, and an observed force as a consequence or an effect.
The existence of charge and its motion produces electromagnetic field in a space. There
are a few laws of forces that describe the physical properties of every electromagnetic
system and associated electric field. In order to start the study of an electromagnetic field
and its character directly, we shall first of all define certain field quantities. Hence we do
not start with Coulomb’s law of force (Charles Auguste de Coulomb, 1736 - 1806) as has
been historically established. We shall define an electric and magnetic field using the
Lorentz force law separately from other postulates. A number of experiments with electro-
magnetic forces show agreement with a few fundamental postulates:

1. The existence of an electric charge

According to the atomic-electron theory of electricity, there are in existence two types
of electric charges: positive and negative. All charges in nature are multiples of the charge
of the electron, whose present-day accepted value is g, = (1.6021892 + 0.0000007 )-10 "
coulombs. The unit of electric charge is defined by means of Coulomb’s law and we
measure it in coulombs (C), which is equivalent to ampere-seconds (As). In this book, we



