Turbo C++

An Introduction to Computing

= r-'\x'l,]

<= d " B
',_:v‘ -—ye) s ;

2]

JOEL ADAMS
SANFORD LEESTMA
LARRY NYHOFF

Turbo C+ +:
An Introduction
to Computing

Joel Adams
Sanford Leestma
Larry Nyhoff

Calvin College
Grand Rapids, Michigan

Library of Congress Cataloging-in-Publication Data

Adams, Joel.

Turbo C++: an introduction to computing / Joel Adams, Sanford
Leestma, Larry Nyhoff.

p. cm,
Includes index.
ISBN 0-13-439928-5

1. C++ (Computer program language) 2. Turbo C++. I Leestma,
Sanford. 1I. Nyhoff, Larry R. III. Title.

QA76.73.C153A34 1996
005.13'3—dc20 95-41348
CIP

About the Cover: The rose window on the cover is the Rose de France (c. 1233) in the north transept of the
Chartres cathedral. Like many of the other beautiful rose windows in French cathedrals, it is an early example
of object-oriented design, in which objects of various shapes, sizes, colors, and meanings are fitted together
according to certain basic principles. An interesting property of this window is how its components—the
outer semicircles containing the last twelve Old Testament prophets; the quatrefoils containing the three-
petaled fleur-de-lis, symbols of the Annunciation and of royalty; the twelve squares containing the kings of
the Virgin Mary’s ancestry as recorded by St. Matthew; the twelve circles containing doves, angels and other
celestial beings; and the twelve-petaled central rosette containing the Virgin Mary—are arranged into spiral-
shaped patterns based on the golden section and the Fibonacci sequence.

Acquisitions Editor: Alan Apt

Developmental Editor: Sondra Chavez

Production Manager: Judy Winthrop

Cover Design: Robert Freese

Cover Art: Giraudon/Art Resource LAC 58289. Rose Window, North Transept, Chartres Cathedral
(13th C.).

Ilustrations: York Graphic Services, Inc.

Manufacturing Buyer: Donna Sullivan

= Copyright © 1996 by Prentice-Hall, Inc.
Simon & Schuster/A Viacom Company
Upper Saddle River, New Jersey 07458

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher shall not be liable in any event for incidental or consequential damages in connec-
tion with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permis-
sion in writing from the publisher.

Printed in the United States of America
10 9 87 6 5 4 3 21
ISBN 0-13-439928-5

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA, INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER Asia PTE., LTD., Singapore

EDITORA PRENTICE-HALL DO BRAZIL, LTDA., Rio de Janeiro

PREFACE

In order to properly introduce students to computing, we believe that the first
computer course for students should accomplish two goals:

1. The student should be introduced to the discipline, methodologies, and tech-
niques of computer programming using a modern programming language.

2. The student should be introduced to the breadth of the discipline of computing,
so that he or she comes to understand the role of programming in the broader
context of computing.

The aim of this textbook is to accomplish both of these goals.

The Programming Goal

In order to accomplish our first goal, we have chosen the language C++, whose
features (we believe) make it the language of choice in the immediate future. A few
of the reasons for this choice are as follows:

1. C++ provides a strong type-checking system.

2. C++ provides reference parameters for its functions.

3. C++ provides a library mechanism, whereby a programmer can store gener-
ally useful functions in a library, so that they can be reused by any program that
needs them.

4. C++ provides function name and operator overloading, allowing a program-
mer to use the same name to define subprograms that perform similar opera-
tions on different data types.

5. C++ provides the class, whereby both an object’s data members and its opera-
tions can be encapsulated within a single, protected structure.

6. C++ provides derived classes, a mechanism whereby one class can inherit the
data members and operations from another class, allowing a class hierarchy to
be built.

These latter features of C++ allow it to be characterized as an object-oriented
programming (OOP) language. From windowing systems to graphic user inter-
faces to object-oriented databases, more and more of today’s best computing appli-

Preface

cations are being developed in C++ using the OOP approach, making it today’s
language of choice.

C++ Is Not C. Many people erroneously believe that C++ is simply its parent
language C with a few additional features and that C++ is therefore inappropriate
as a first programming language. In fact, most of the design flaws of C have been
corrected in C++, making it a suitable language for a first course in computing.

The Importance of Modeling. Another popular misconception is that because
many C programs are cryptically written, C++ programs probably suffer the same
drawback. We believe that cryptic programs are caused by people, not by a lan-
guage, and an undisciplined programmer will write cryptic programs in any lan-
guage, not just C. This is because:

1. Most people learn C from the examples they see in a book; and
2. Most C books are not introductory programming texts, but rather language
references intended for professional programmers.

One of the aims of this text is to teach a disciplined programming style (to those
with no programming experience) that results in well-documented, easy-to-read
programs.

We believe that what students learn depends on the models that they see. That
is, if they are presented with examples that are well-written, well-documented, and
maintainable, then the programs they write will exhibit these same characteristics,
regardless of the language used. To that end, this text contains a large number of
examples that illustrate good programming style.

Standard C++. At the time of this writing, the American National Standards
Institute (ANSI) Committee X3J16 had not completed a C++ standard. In the
absence of such a standard, we have used the Annotated C++ Reference Manual'
as our primary reference in preparing this text.

While written in the Turbo environment, the examples in this text are not
restricted to that environment and have been successfully ported to the following
environments:

Computing Environment C++ Compiler
UNIX (Sun, Apollo, etc.) GNU g++ (v. 2.4.5)?
DOS, Windows, OS-2 (IBM PC) Turbo C++ (v. 3.0)°
MacOS (Apple Macintosh) Symantec C++ For Macintosh (v. 6.01)*

! Margaret Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual. (Addison-Wesley, 1992).

> GNU g++ is a copylefted product of the Free Software Foundation, Inc., 675 Mass Ave., Cambridge, MA
02139; and is available for free via anonymous ftp from prep.ai.mit.edu:/pub/gnu.

3 Turbo C++ is a copyrighted product of Borland International Inc., 1800 Green Hills Rd., P.O. Box
660001, Scotts Valley, CA 95067; and is available from most software vendors for the IBM PC.

* Symantec C++ for Macintosh is a copyrighted product of Symantec Corporation, 10201 Torre Ave.,
Cupertino, CA 95014; and is available from most software vendors for the Apple Macintosh.

Preface xxiii

The Breadth of Computing

In 1991, a new set of curriculum recommendations was published in Computing
Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force. One
theme of this report is that an introductory course in computing should introduce
the various knowledge areas of the discipline:

B Architecture

m Artificial intelligence and robotics

B Database and information retrieval

® Human—computer communication

B Numerical and symbolic computation

B QOperating systems

B Programming languages

® Software methodology and engineering
® Social, ethical, and professional context

In this text, we include a number of sections that illustrate these areas, trying to
capture the spirit of these curriculum guidelines in a natural, unobtrusive way.
These sections have been carefully selected in accordance with the Computing
Curricula 1991 report to provide an overview of computer science and to provide a
foundation for further study in theoretical and/or applied computer science. They H‘
have been highlighted in special PART OF THE PICTURE sections, which are

marked with an icon in the shape of a puzzle piece. These sections include:

What Is Computer Science?

The History of Computing

Computer Organization

Social, Professional, and Ethical Issues
Syntax and Semantics

Computer Architecture
Computability Theory

Introduction to Numeric Computation
Introduction to Algorithm Analysis
Simulation

Artificial Intelligence

Databases

Data Encryption

The Type Hierarchy

Analysis of Algorithms

Automata and Language Translation
Numeric Computation

Computer Graphics

Expert Systems

A solid base is thus established for later courses in theoretical and/or applied
computer science.

XXV Preface

About the Text

Organization. We have organized the text material into four parts:

The text begins with an Introduction consisting of two chapters that present
an overview of computing and programming.

The second part of the text, Computing with Simple Objects, consists of five
chapters that introduce the student to the basic ideas of computing, includ-
ing types, variables, constants, functions, I/O, libraries, selective control,
repetitive control, parameter passing mechanisms, and so on. Each of these
topics is covered in the context of simple data types: the integer, real, char-
acter, and boolean types.

The third part, Computing with Class Objects, consists of seven chapters
that extend the ideas from the second part to problems involving more
sophisticated data types, including files, character strings, enumerations,
arrays, and sets. Where applicable, C++ class libraries are used to imple-
ment objects that can be easily reused and maintained.

The final part, Computing with Advanced Objects, consists of three chapters
that introduce advanced topics, including indirection, run-time allocation/
deallocation, and linked structures, such as linked lists, stacks, queues, and
trees, each implemented using C++ classes.

We think that most of the first three parts can be covered in a typical semester
course. Some or all of the fourth part can be covered in accelerated courses or in
a second course or can be used as enrichment material or for honors work.

Features. This first edition text breaks new ground in many ways, by providing a
gentle introduction to new topics such as designing for reusability; the use, design,
and implementation of class libraries; the overloading of operators and function
names; and the OOP approach to program design. A few of the features of the text

are:

Each chapter begins with an example problem, whose solution is used to
introduce the ideas of that chapter. Following this example, the concepts and
theory behind these ideas are explored, and other examples are presented to
reinforce the ideas. In this approach, students see the practice of a new topic
before the abstract definitions and theory behind that topic, providing them
with a framework in which those abstract aspects can be organized and
understood.
A wealth of examples illustrates each topic, allowing students to distinguish
what is essential from what is optional. In the spirit of Computing Curricula
1991, these examples are chosen from a wide range of applications and have
been written to model good structure and style. Those marked in the text
with a disk icon are included on the data disk that accompanies the Instruc-
tor’s Manual or can be downloaded from our ftp site as follows:

ftp to ftp.prenhall.com

login as anonymous

use your email address as the password

cd to pub/EMS/adams/turbo.c+ +
Optional sections (marked with asterisks) delve into the more advanced
topics, without requiring that they be covered in a normal introductory
course.

Preface

® Each chapter ends with Programming Pointers that highlight important
points, especially proper techniques of design and style, as well as common
programming pitfalls.

® Color is used to emphasize and highlight important features.

® Exercise sets include short written exercises as well as a large number of
programming exercises and projects drawn from a wide range of application
areas.

XXV

Supplementary Materials

A number of supplementary materials are available from the publisher. These
include the following:

B A solutions manual that contains solutions to the exercises in the text, in-
cluding many of the programming exercises.
® A lab manual and diskette prepared by Professor Joel Adams.
® Disk containing the sample programs and data files referenced in the text. In
addition, this material can be downloaded from our ftp site as follows:
ftp to ftp.prenhall.com
login as anonymous
use your email address as the password
cd to pub/EMS/adams/turbo.c++
® Disks containing all of the text exercises and solutions to many of the pro-
gramming exercises.

Suggestions

The authors welcome feedback, both positive and negative. Comments about fea-
tures of the text that work especially well, as well as about features of the text that
need improvement, will aid us in the preparation of subsequent editions. We would
also appreciate being notified of errors. Such comments can be directed to any of
the authors at the following U.S. mail address:

Department of Mathematics and Computer Science

Calvin College

Grand Rapids, Michigan 49546

USA
or to adams(icalvin.edu, lees(calvin.edu, or nyhl@calvin.edu via the
Internet.

Acknowledgments

The comments and suggestions made by the following reviewers of the forerunner
of this text, C+ +: An Introduction to Computing, were valuable, and their work is
much appreciated: Jose Cisnaros, Metropolitan College of Denver; Ann Ford, Uni-
versity of Michigan; Mike Holland, Northern Virginia Community College; John
Lowther, Michigan Technological University; Dick Reed, Michigan State Univer-
sity; and Peter Spoerri, Fairfield University. Our thanks also go to Evan Scott of

XXVi

Preface

Borland International, Inc., for his work in checking our descriptions of Turbo
C++ features in this text. We must also thank our wives, Barbara, Marjory, and
Shar, for not complaining about the times that their needs and wants were slighted
by our busyness. Above all, we give thanks to God for giving us the opportunity,
ability, and stamina to prepare these texts.
J.C.A.
S.C.L.
L.R.N.

CONTENTS

PREFACE XXi

PART I: INTRODUCTION TO COMPUTING 1

1
1.1
1.2

1.3

1.4

2.1

THE SCIENCE OF COMPUTING 3
PART OF THE PICTURE: What Is Computer Science? 4

PART OF THE PICTURE: The History of Computing 5

The Mechanization of Arithmetic 6
The Stored Program Concept 9
Mechanical Computers 10

Early Electronic Computers 14
Modern Computers 15

Computer Software 17

A Brief History of C++ 18
Summary 18

PART OF THE PICTURE: Computer Organization 19

Computing Systems 19

Memory Organization 20

Number Systems 20

Data Storage 22

Instruction Processing 26

PART OF THE PICTURE: Social, Professional, and Ethical Issues 29

Exercises 32

PROGRAM DEVELOPMENT 37

An Introduction to Software Development 39

Problem I: Revenue Calculation 39
Stage 1: Problem Analysis and Specification 39

vi

Contents

2.2

2.3

24

2.5

2.6

Stage 2: Design 40

Stage 3: Coding 42

Stage 4: Verification and Validation 45
Stage 5: Maintenance 46

Exercises 47

Problem Analysis and Specification 49

Problem 2: The Pollution Index Problem—Specification 49
Problem 3: The Mean Time to Failure Problem—Specification 50
A ‘‘Real-World’’ Problem: Payroll 50

Design 51

Object Attributes 52
Operations 53
Algorithms 54
Object-Oriented Design 57
Coding 60

Types 60

Variable Data Objects 60
Constant Data Objects 62
Numeric Operations 63
Input/Output 63
Comments 64
Programming Style 64
Coding in Turbo C++ 66

Verification and Validation in Turbo C++ 67
Translating a Turbo C++ Program 68

Testing a Turbo C++ Program 70

Life-Critical Systems 73

Maintenance 74

Exercises 74

PART II: COMPUTING WITH SIMPLE OBJECTS

3
3.1

3.2

3.3

GETTING STARTED WITH EXPRESSIONS

C++ Programs 82

Examples of Programs 83

The Main Function 84

Programming with Libraries—Not Reinventing the Wheel 85
Libraries 86

Using a Library 86

Linking to a Library 87

Declarations: Types of Objects 87

Fundamental Types 88
Identifiers 93

79
81

3.4

3.5

3.6

3.7

3.8

4.1

4.2

Contents

Named Constants 94
Variables 97
Variable Initialization 100

Exercises 100

Numeric Expressions 101

Operators 102
Functions 106

Exercises 108

Assignment Expressions 110

Assignment as an Operation 114

Chaining Assignment Operators 114

The Increment and Decrement Operations 115

Other Assignment Shortcuts 117

Transforming Expressions into Statements—Semicolons 119
A Final Word 119

Exercises 120

Input/Output Expressions 121

I/0 Streams 122

Input Expressions 123

Output Expressions 126
Example: Calculating Wages 128
Output Formatting 129

Exercises 134

Example: Truck Fleet Accounting 136

Problem 136

Specification 136

Design 136

Coding and Testing 137

PART OF THE PICTURE: Syntax and Semantics 139
Exercises 142

Programming Pointers 143

Program Design 143
Potential Problems 143
Program Style 147

Programming Projects 147

FUNCTIONS AND LIBRARIES 151
Computing with Formulas 152

Example: Temperature Conversion 152

Computing with Functions 154

Defining a Function 157
Declaring a Function 160

viii Contents

Calling a Function 161
Summary 164

Exercises 165

4.3 Computing with Libraries 167

Constructing a Library 167

Using a Library in a Program 171
Translating a Library 172
Summary 173

Exercises 175

4.4 Example Program: Converting Days to Distance 175

Problem 175
Specification 175
Design 176

Coding 178
Program Testing 183

Exercises 184

4.5 Computing with Class Libraries 185

Introduction to Classes 186
Summary 189

Programming Pointers 189

Program Design 189
Potential Problems 190
Program Style 193

Programming Projects 194

5 SELECTIVE EXECUTION 195

5.1 Sequential Execution 196
Compound Statements 196

5.2 Introducing Selective Execution 198
Problem: Computing a Reciprocal 198
A Better Algorithm 199
A Better Function 200

5.3 Conditions 200

Simple Boolean Expressions 200
Compound Boolean Expressions 202
Operator Precedence 204
Short-Circuit Evaluation 205
5.4 PART OF THE PICTURE: Computer Architecture 205
Exercises 208

5.5 Selection: The if Statement 209

Example: Pollution Index Problem 209
The Simple if Statement 211

5.6

*5.7

5.8

5.9

6.2

Contents

The General if Statement 212

Example: Grade Computation 215

Example: Grade Computation—Version 2 218
The if-else-if Form 220

Example: Grade Computation—Version 3 222
Pitfall: Confusing = and == 225

Exercises 227

Selection: The switch Statement 228

Example: Converting Year Names to Year Codes 229
Form of the switch Statement 231

The break Statement 232

Choosing the Selection Statement to Use 232
Drop-Through Behavior 234

Example: Grade Computation—Version 4 235

Exercises 238

Selection: Conditional Expressions 239
Exercises 243

Example: A Menu-Driven Temperature Converter 243

Problem 243
Specification 244
Design 245
Coding 247

PART OF THE PICTURE: Computability Theory 250

Programming Pointers 252

Program Design 252
Potential Problems 255
Program Style 258

Programming Projects 260

REPETITION STATEMENTS 263

Introduction to Repetition: The For Loop 264
The Summation Problem 264

Counting Loops 268

Nested Loops: Displaying a Multiplication Table 272
Words of Warning 275

Exercises 276

Repetition: The While Loop 278
Example: Follow the Bouncing Ball 278
The while Statement 280
Words of Warning 282
Using Sentinel-Controlled While Loops to Input a List of Values 283
Using End-of-File-Controlled While Loops to Input a List
of Values 287

Exercises 291

ix

Contents

6.3 Repetition: The Do-While Loop 292

Example: How Many Digits? 292

A Posttest Loop 296

Words of Warning 297

Using a Do-While Loop to Input a List of Values 298

Exercises 304

*6.4 Repetition: The Forever Loop 305

Example: The ATM Menu-Choice Problem 306
An Unrestricted Loop 310

Input Loops Using Sentinels 313

Input Loops Using End-of-File 316

Words of Warning 317

Exercises 318

6.5 Guidelines for Using Loops 320

Choosing the Right Loop 320
Confusing = and == 323

Exercises 324

6.6 Techniques for Testing and Debugging Loops 324

An Example 325

Trace Tables 328

Debugging 328

Modifying and Testing the Program 329
Summary 332

Exercises 332

6.7 Example: Depreciation Tables 333

Problem: Depreciation Tables 333
Using the Depreciation Functions 336

Exercises 341

6.8 PART OF THE PICTURE: Introduction to Numeric Computation 341

Curve Fitting: Least Squares Line 342
Solving Equations 347

Exercises 351

6.9 PART OF THE PICTURE: Introduction to Algorithm Analysis 353
Programming Pointers 355

Program Design 355
Potential Problems 356
Program Style 358

Programming Projects 359

7 FUNCTIONS: AN IN-DEPTH LOOK 361

7.1 Returning Multiple Values from a Function 362
Example: The Half-Adder Revisited 362

72

7.3

7.4

*7.5

7.6

77

7.8

7.9

7.10

Contents

Reference Parameters 366

Value Parameters 366
Reference Parameters 368
Using Reference Parameters 371

Examples Using Reference Parameters 374

Example 1: Making Change 374
Example 2: Exchanging the Values of Two Variables 379
Example 3: Analyzing a List of Data Values 385

Exercises 388

Default Values for Parameters 391

Example: Evaluating Fourth-Order Polynomials 391
The Difficulty 392

The Solution 393

Limitations of Default Parameter Values 394
Summary 395

Varying the Number of Arguments 396
Example: Evaluating Polynomials of Any Degree 396

Inline Functions 400

Obiject Lifetime and Storage Classes 402

First Things First 403

Object Lifetime 403

Storage Classes 404

Example: Computing Sums 405
Using the register Specifier 407

PART OF THE PICTURE: Simulation 408
Example: Modeling a Dice Roll 409
Exercises 413

Introduction to Recursion 415

Examples: Factorial, Exponentiation, and Number Reversal 416
Recursion versus Iteration 432

Exercises 433

PART OF THE PICTURE: Artificial Intelligence 437
Example: The Towers of Hanoi 438

Exercises 441

Programming Pointers 441

Program Design 441
Potential Problems 442
Program Style 443
Programming Projects 444

Xi

xii Contents

PART Ill: COMPUTING WITH CLASS OBJECTS 447

8
8.1

8.2

8.3

8.4

8.5

9.1

9.2
9.3

9.4

FILES AND STREAMS 449

Computing with Files 450
Example: Processing Meteorological Data 451

fstream Objects and Operations 456

Declaring fstream Objects 456
The Basic fstream Operations 457
Summary 469

Exercises 470

Examples: Employee File Processing and Payroll Computation 472
Problem 1: Processing a File of Employee Data 472

Problem 2: Payroll Computation (£stream Objects as Parameters) 475
Additional £stream Operations 481

The get () and put () Members 482

The seekg(), tellg(), seekp(), and tellp() Members 485
Controlling I/0 State Flags 490

The peek(), putback(), and ignore() Members 494
Example: A Goof-Proof Numeric Input Function 496

PART OF THE PICTURE: Databases 498

Exercises 500

Programming Pointers 501

Program Design 501
Potential Problems 502

Programming Projects 504

CHARACTER STRINGS 507

A Sample Problem 508
Problem: Reversing a String 508

Declaring Strings 511

String 1/0 514

Input 514
Output 517
Example: Copying a File 518

Exercises 521

More Operations on Strings Objects 522
String Length 522

The Subscript Operator 523

Assignment 525

The Relational Operators 527

Concatenation 529

