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PREFACE

In order to properly introduce students to computing, we believe that the first
computer course for students should accomplish two goals:

1. The student should be introduced to the discipline, methodologies, and tech-
niques of computer programming using a modern programming language.

2. The student should be introduced to the breadth of the discipline of computing,
so that he or she comes to understand the role of programming in the broader
context of computing.

The aim of this textbook is to accomplish both of these goals.

The Programming Goal

In order to accomplish our first goal, we have chosen the language C++, whose
features (we believe) make it the language of choice in the immediate future. A few
of the reasons for this choice are as follows:

1. C++ provides a strong type-checking system.

2. C++ provides reference parameters for its functions.

3. C++ provides a library mechanism, whereby a programmer can store gener-
ally useful functions in a library, so that they can be reused by any program that
needs them.

4. C++ provides function name and operator overloading, allowing a program-
mer to use the same name to define subprograms that perform similar opera-
tions on different data types.

5. C++ provides the class, whereby both an object’s data members and its opera-
tions can be encapsulated within a single, protected structure.

6. C++ provides derived classes, a mechanism whereby one class can inherit the
data members and operations from another class, allowing a class hierarchy to
be built.

These latter features of C++ allow it to be characterized as an object-oriented
programming (OOP) language. From windowing systems to graphic user inter-
faces to object-oriented databases, more and more of today’s best computing appli-
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cations are being developed in C++ using the OOP approach, making it today’s
language of choice.

C++ Is Not C. Many people erroneously believe that C++ is simply its parent
language C with a few additional features and that C++ is therefore inappropriate
as a first programming language. In fact, most of the design flaws of C have been
corrected in C++, making it a suitable language for a first course in computing.

The Importance of Modeling. Another popular misconception is that because
many C programs are cryptically written, C++ programs probably suffer the same
drawback. We believe that cryptic programs are caused by people, not by a lan-
guage, and an undisciplined programmer will write cryptic programs in any lan-
guage, not just C. This is because:

1. Most people learn C from the examples they see in a book; and
2. Most C books are not introductory programming texts, but rather language
references intended for professional programmers.

One of the aims of this text is to teach a disciplined programming style (to those
with no programming experience) that results in well-documented, easy-to-read
programs.

We believe that what students learn depends on the models that they see. That
is, if they are presented with examples that are well-written, well-documented, and
maintainable, then the programs they write will exhibit these same characteristics,
regardless of the language used. To that end, this text contains a large number of
examples that illustrate good programming style.

Standard C++. At the time of this writing, the American National Standards
Institute (ANSI) Committee X3J16 had not completed a C++ standard. In the
absence of such a standard, we have used the Annotated C++ Reference Manual'
as our primary reference in preparing this text.

While written in the Turbo environment, the examples in this text are not
restricted to that environment and have been successfully ported to the following
environments:

Computing Environment C++ Compiler
UNIX (Sun, Apollo, etc.) GNU g++ (v. 2.4.5)?
DOS, Windows, OS-2 (IBM PC) Turbo C++ (v. 3.0)°
MacOS (Apple Macintosh) Symantec C++ For Macintosh (v. 6.01)*

! Margaret Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual. (Addison-Wesley, 1992).

> GNU g++ is a copylefted product of the Free Software Foundation, Inc., 675 Mass Ave., Cambridge, MA
02139; and is available for free via anonymous ftp from prep.ai.mit.edu:/pub/gnu.

3 Turbo C++ is a copyrighted product of Borland International Inc., 1800 Green Hills Rd., P.O. Box
660001, Scotts Valley, CA 95067; and is available from most software vendors for the IBM PC.

* Symantec C++ for Macintosh is a copyrighted product of Symantec Corporation, 10201 Torre Ave.,
Cupertino, CA 95014; and is available from most software vendors for the Apple Macintosh.
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The Breadth of Computing

In 1991, a new set of curriculum recommendations was published in Computing
Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force. One
theme of this report is that an introductory course in computing should introduce
the various knowledge areas of the discipline:

B Architecture

m Artificial intelligence and robotics

B Database and information retrieval

® Human—computer communication

B Numerical and symbolic computation

B QOperating systems

B Programming languages

® Software methodology and engineering
® Social, ethical, and professional context

In this text, we include a number of sections that illustrate these areas, trying to
capture the spirit of these curriculum guidelines in a natural, unobtrusive way.
These sections have been carefully selected in accordance with the Computing
Curricula 1991 report to provide an overview of computer science and to provide a
foundation for further study in theoretical and/or applied computer science. They H‘
have been highlighted in special PART OF THE PICTURE sections, which are

marked with an icon in the shape of a puzzle piece. These sections include:

What Is Computer Science?

The History of Computing

Computer Organization

Social, Professional, and Ethical Issues
Syntax and Semantics

Computer Architecture
Computability Theory

Introduction to Numeric Computation
Introduction to Algorithm Analysis
Simulation

Artificial Intelligence

Databases

Data Encryption

The Type Hierarchy

Analysis of Algorithms

Automata and Language Translation
Numeric Computation

Computer Graphics

Expert Systems

A solid base is thus established for later courses in theoretical and/or applied
computer science.
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About the Text

Organization. We have organized the text material into four parts:

The text begins with an Introduction consisting of two chapters that present
an overview of computing and programming.

The second part of the text, Computing with Simple Objects, consists of five
chapters that introduce the student to the basic ideas of computing, includ-
ing types, variables, constants, functions, I/O, libraries, selective control,
repetitive control, parameter passing mechanisms, and so on. Each of these
topics is covered in the context of simple data types: the integer, real, char-
acter, and boolean types.

The third part, Computing with Class Objects, consists of seven chapters
that extend the ideas from the second part to problems involving more
sophisticated data types, including files, character strings, enumerations,
arrays, and sets. Where applicable, C++ class libraries are used to imple-
ment objects that can be easily reused and maintained.

The final part, Computing with Advanced Objects, consists of three chapters
that introduce advanced topics, including indirection, run-time allocation/
deallocation, and linked structures, such as linked lists, stacks, queues, and
trees, each implemented using C++ classes.

We think that most of the first three parts can be covered in a typical semester
course. Some or all of the fourth part can be covered in accelerated courses or in
a second course or can be used as enrichment material or for honors work.

Features. This first edition text breaks new ground in many ways, by providing a
gentle introduction to new topics such as designing for reusability; the use, design,
and implementation of class libraries; the overloading of operators and function
names; and the OOP approach to program design. A few of the features of the text

are:

Each chapter begins with an example problem, whose solution is used to
introduce the ideas of that chapter. Following this example, the concepts and
theory behind these ideas are explored, and other examples are presented to
reinforce the ideas. In this approach, students see the practice of a new topic
before the abstract definitions and theory behind that topic, providing them
with a framework in which those abstract aspects can be organized and
understood.
A wealth of examples illustrates each topic, allowing students to distinguish
what is essential from what is optional. In the spirit of Computing Curricula
1991, these examples are chosen from a wide range of applications and have
been written to model good structure and style. Those marked in the text
with a disk icon are included on the data disk that accompanies the Instruc-
tor’s Manual or can be downloaded from our ftp site as follows:

ftp to ftp.prenhall.com

login as anonymous

use your email address as the password

cd to pub/EMS/adams/turbo.c+ +
Optional sections (marked with asterisks) delve into the more advanced
topics, without requiring that they be covered in a normal introductory
course.
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® Each chapter ends with Programming Pointers that highlight important
points, especially proper techniques of design and style, as well as common
programming pitfalls.

® Color is used to emphasize and highlight important features.

® Exercise sets include short written exercises as well as a large number of
programming exercises and projects drawn from a wide range of application
areas.
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Supplementary Materials

A number of supplementary materials are available from the publisher. These
include the following:

B A solutions manual that contains solutions to the exercises in the text, in-
cluding many of the programming exercises.
® A lab manual and diskette prepared by Professor Joel Adams.
® Disk containing the sample programs and data files referenced in the text. In
addition, this material can be downloaded from our ftp site as follows:
ftp to ftp.prenhall.com
login as anonymous
use your email address as the password
cd to pub/EMS/adams/turbo.c++
® Disks containing all of the text exercises and solutions to many of the pro-
gramming exercises.

Suggestions

The authors welcome feedback, both positive and negative. Comments about fea-
tures of the text that work especially well, as well as about features of the text that
need improvement, will aid us in the preparation of subsequent editions. We would
also appreciate being notified of errors. Such comments can be directed to any of
the authors at the following U.S. mail address:

Department of Mathematics and Computer Science

Calvin College

Grand Rapids, Michigan 49546

USA
or to adams(icalvin.edu, lees(calvin.edu, or nyhl@calvin.edu via the
Internet.
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