

John Whittall and Tom E. Pickett

Catalysts for Fine Chemical Synthesis

Volume 3

Metal Catalysed Carbon-Carbon Bond-Forming Reactions

Edited by

Stanley M. Roberts and **Jianliang Xiao** *University of Liverpool, UK*

John Whittall and Tom E. Pickett The Heath, Runcorn Stylacats Ltd, UK

Copyright © 2004 John Wiley & Sons, Ltd, The Atrium, Southern Gate Chichester, West Sussex, PO19 8SQ, England

Phone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.co.uk or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, W1P 0LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England, or e-mailed to permreq@wiley.co.uk, or faxed to (44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Pappellaee 3, D-69469 Weinheim, Germany

John Wiley & Sons Australia, Ltd, 33 Park Road, Milton, Queensland, 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada, M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

TP248.65.E59 H98 660'.28443-dc21

2002072357

British Library Cataloguing in Publication Data

ISBN 0-470-86199-1

Typeset in 10/12pt Times by Thomson Press (India) Limited, New Delhi Printed and bound in Great Britain by MPG Limited, Bodmin, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Catalysts for Fine Chemical Synthesis

Volume 3

Catalysts for Fine Chemical Synthesis

Series Editors

Stanley M. Roberts and Ivan V. Kozhevnikov

University of Liverpool, UK

Eric Derouane

Universidade do Algarve, Faro, Portugal

Previously Published Books in this Series

Volume 1: Hydrolysis, Oxidation and Reduction

Edited by Stanley M. Roberts and Geraldine Poignant, *University of Liverpool, UK* ISBN 0 471 98123 0

Volume 2: Catalysis by Polyoxometalates

Edited by Ivan. K. Kozhevnikov, *University of Liverpool* ISBN 0 471 62381 4

Volume 3: Metal Catalysed Carbon-Carbon Bond-Forming Reactions

Edited by Stanley M. Roberts and Jianliang Xiao, *University of Liverpool, UK* and John Whittall and Tom E. Pickett, *The Heath, Runcorn Stylacats Ltd, UK*

Forthcoming Books in this Series

Volume 4: Micro- and Mesoporous Catalysts

Edited by Eric Derouane, *Universidade do Algarve*, *Portugal* ISBN 0 471 49054 7

Volume 5: Regio- and Stero-Controlled Oxidations and Reductions

Edited by Stanley M. Roberts, *University of Liverpool*, *UK* ISBN 0 470 09022 7

Catalysts for Fine Chemical Synthesis Series Preface

During the early-to-mid 1990s we published a wide range of protocols, detailing the use of biotransformations in synthetic organic chemistry. The procedures were first published in the form of a loose-leaf laboratory manual and, recently, all the protocols have been collected together and published in book form (*Preparative Biotransformations*, Wiley, Chichester, 1999).

Over the past few years the employment of enzymes and whole cells to carry out selected organic reactions has become much more commonplace. Very few research groups would now have any reservations about using commercially available biocatalysts such as lipases. Biotransformations have become accepted as powerful methodologies in synthetic organic chemistry.

Perhaps less clear to a newcomer to a particular area of chemistry is *when* to use biocatalysis as a key step in a synthesis, and when it is better to use one of the alternative non-natural catalysts that may be available. Therefore we set out to extend the objective of *Preparative Biotransformations*, so as to cover the whole panoply of catalytic methods available to the synthetic chemist, incorporating biocatalytic procedures where appropriate.

In keeping with the earlier format we aim to provide the readership with sufficient practical details for the preparation and successful use of the relevant catalyst. Coupled with these specific examples, a selection of the products that may be obtained by a particular technology will be reviewed.

In the different volumes of this new series we will feature catalysts for oxidation and reduction reactions, hydrolysis protocols and catalytic systems for carbon-carbon bond formation *inter alia*. Many of the catalysts featured will be chiral, given the present day interest in the preparation of single-enantiomer fine chemicals. When appropriate, a catalyst type that is capable of a wide range of transformations will be featured. In these volumes the amount of practical data that is described will be proportionately less, and attention will be focused on the past uses of the system and its future potential.

Newcomers to a particular area of catalysis may use these volumes to validate their techniques, and, when a choice of methods is available, use the background information better to delineate the optimum strategy to try to accomplish a previously unknown conversion.

S. M. ROBERTS I. KOZHEVNIKOV E. DEROUANE LIVERPOOL, 2002

Preface for Volume 3: Metal Catalysed Carbon-Carbon Bond-Forming Reactions

Volume 1 in this Series described practical tips for performing some topical oxidation and reduction reactions. This Volume features modern methods for carbon-carbon bond formation, which has always been at the heart of organic synthesis. In recent times, very efficient carbon-carbon bond-forming catalysts have been invented, to assist bench chemists in industry and academia to construct interesting target molecules.

The first Chapter presents a modern overview from an industrial perspective of the employment of catalysts in transformations of commercial importance.

Later Chapters in this Volume describe the use of some of the important catalysts for carbon-carbon bond-forming reactions in detail, often building very significantly on the information available in the primary Journals. Hints and tips on such things as crucial colour changes are included, as well as pointers to potential risks in the procedures. In the cases where the catalyst is not commercially available the preparation of the material is described, again in sufficient detail to make it accessible to the non-expert.

Thus, this Volume is divided into 12 Chapters encompassing different types of carbon-carbon bond forming reactions. The first two experimental Chapters cover alkylation reactions adjacent to carbonyl functionality (Chapter 2) and the asymmetric displacement of acetate groups situated in an allylic position with the resultant formation of optically active product possessing a new carbon-carbon bond (Chapter 3).

The procedures described in Chapters 4–7 all relate to a set of broadly similar transformations that are becoming exceptionally important and well used in laboratories worldwide. In Chapter 4, eight examples of the Suzuki coupling reaction are described; four accounts describe the use on activated alkene (vinyl bromide, triflate or tosylate) as the coupling partner for boronic acid derivatives. The other examples of Suzuki couplings involve aryl bromides and aryl chlorides. It is noteworthy that the methodology introduced by Nolan has been extended to include amination reactions.

Chapter 5 details conditions for performing the Heck reaction (including one asymmetric version) while Chapter 6 describes how Sonogashira reactions can be conducted successfully. (The conditions of Plenio and Luo can be used to perform Heck and/or Suzuki reactions). In Chapter 7 cross-coupling reactions involving

Grignard reagents and organoindium species are reported, together with a variety of cross-couplings invented by Lipshutz, Lautens and colleagues.

The regioselective allylation of selected aldehydes as well as asymmetric carbon-carbon bond-forming reactions using the same carbonyl species are featured in Chapter 8.

Three procedures have been gathered together in Chapter 9 in order to illustrate modern techniques for the use of olefin-methathesis reactions in organic chemistry (Chapter 9). Other cyclisation reactions form the basis of the content of Chapter 10; thus a procedure for the Pauson-Khand reaction is followed by two other methods for producing five-membered rings. In the same Chapter, two procedures leading to six-membered rings are documented, including a [2+2+2] reaction.

The final two Chapters contain descriptions of equally important reactions. Chapter 11 has experimental details for two asymmetric coupling reactions leading to aldol products as well as two protocols for performing asymmetric Michael reactions. Asymmetric and diastereoselective hydroformylation reactions form the bulk of Chapter 12; we have joined them together with a modern carbonylation procedure and an intriguing carboxylation reaction.

Last but certainly not least, the Editors wish to thank all the 40+ authors for providing their recipes without fuss and/or delay, according to our prescribed format. We hope the detailed descriptions will allow other scientists to have convenient access to a selection of reactions of ever-growing significance and importance in synthetic chemistry.

STANLEY M. ROBERTS LIVERPOOL, 2004

Abbreviations

Ac acetyl

acac acetylacetone

Ar aryl

b.p. boiling point

BINAP 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl

BINOL to be confirmed

BSA *N,O*-bis-(trimethylsilyl)-acetamide

Bu butyl cat catalyst

Chsalen [N,N'-bis-(2'-hydroxybenzylidene)]-1,2-diaminocyclo-

hexane

CLAMPS cross-linked aminomethylpolystyrene

COD to be confirmed

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

de to be confirmed

DEPT diethyl tartrate

DIPT diisopropyl tartrate

DMAP 4-dimethylaminopyridine

DMF Dimethyl formamide

DMM dimethoxymethane

DMSO dimethyl sulfoxide

dppf [or DPPF]diphenylphosphinoferroceneEDTAethylenediaminetetraacetic acid

ee enantiomeric excess

eq equivalent Et ethyl

EtOAc Ethyl acetate

GC gas chromatography

HPLC high pressure liquid chromatography

ID internal diameter
IR infrared (spectroscopy)

L ligand lit. literature M metal

m.p. melting point

MCPBA \ meta-chloroperbenzoic acid

m-CPBA ∫

Me methyl

 $MTPA \hspace{1cm} methoxy-\alpha-(trifluoromethyl)phenylacetyl$

NaOMe to be confirmed

NMR nuclear magnetic resonance

Ph phenyl Pr propyl

psi pounds per square inch PTC Phase Transfer Catalyst r.p.m. rotation per minutes R_f retention factor retention time Salen to be confirmed

TBHP tert-butyl hydroperoxide

THF tetrahydrofuran

TLC thin layer chromatography

TMS tetramethylsilane

UHP urea-hydrogen peroxide

UV ultraviolet

v:v volume per unit volume

List of Chemical Names Used

 $\begin{array}{lll} \text{CaH}_2 & \text{Calcium hydride} \\ \text{Ca(OH)}_2 & \text{Calcium hydroxide} \\ \text{CH}_2\text{Cl}_2 & \text{Dichloromethane} \\ \text{CuCl} & \text{Copper (I) chloride} \\ \text{CuCl}_2 & \text{Copper (II) chloride} \\ \text{DMF} & \text{Dimethyl formamide} \end{array}$

 $\begin{array}{ll} EtOAc & Ethyl \ acetate \\ Et_2O & Diethyl \ ether \\ Et_2Zn & Diethyl \ zinc \\ HOAc & Acetic \ acid \end{array}$

KHCO₃ Potassium hydrogen carbonate KHSO₄ Potassium hydrogen sulfate NaHCO₃ Sodium hydrogen carbonate

Na₂SO₃ Sodium sulfite Pd(OAc)₂ Palladium acetate

Contents

Seri	es Pre	eface .		xvii
Pref	ace to	o Volun	ne 3	xix
Abb	revia	tions .		xxi
List	of C	hemical	l Names Used	xxiii
1	Con	siderat	ions of Industrial Fine Chemical Synthesis	1
		Mark	W. Hooper	1
	1.1	Introd	uction	
	1.2	Types	of processes – flow charts	2
		1.2.1	Classical process	2
		1.2.2	General catalytic process	3
	1.3	Costs	associated with use of catalysts	3
		1.3.1	Catalyst fabrication costs	3
		1.3.2	Intellectual property right (IPR) issues	6
		1.3.3	Separation costs	7
		1.3.4	Pre-reaction/immobilisation	7
		1.3.5	Post reaction – separation	8
		1.3.6	Industrial examples	9
		Refere	ences	12
2	Alky	ylation	and Allylation Adjacent to a Carbonyl Group	13
	2.1	The R	RuH ₂ (CO)(PPh ₃) ₃ -catalysed alkylation,	
			ylation and arylation of aromatic ketones via	
		carbo	n-hydrogen bond cleavage	
		Fumit	oshi Kakiuchi, Satoshi Ueno and Naoto Chatani	14
		2.1.1	Preparation of carbonyldihydrotris(triphenylphosphine)	
			ruthenium	14
		2.1.2	Synthesis of 8-(2-triethoxysilanylethyl)-3,4-dihydro-2H-	
			naphthalen-1-one	16
		2.1.3	Synthesis of 8-(1-methyl-2-trimethylsilanylvinyl)-3,4-	
			dihydro-2H-naphthalen-1-one	17
		2.1.4	Synthesis of 1-biphenyl-2-yl-2,2-dimethylpropan-1-one	18

vi CONTENTS

		2.1.5 Perfere	Conclusion	19 21
	2.2	Catalytic, asymmetric synthesis of α,α -disubstituted amino acids using a chiral copper-salen complex as a phase transfer catalyst <i>Michael North and Jose A. Fuentes</i>		21
				22
		2.2.1 2.2.2 2.2.3	Synthesis of (chsalen)	23
			salen-metal catalysts, α-benzyl-alanine methyl ester	24
		2.2.4	Conclusion	26
		Refere	ences	27
	2.3	Asymmetric phase-transfer catalysed alkylation of		
		glycin	ne imines using cinchona alkaloid derived quaternary	
		ammo	onium salts	
		Barry	Lygo and Benjamin I. Andrews	27
		2.3.1	Synthesis of (1 <i>S</i> ,2 <i>S</i> ,4 <i>S</i> ,5 <i>R</i> ,1' <i>R</i>)-1-(anthracen-9-ylmethyl)-5-ethyl-2-[hydroxy(quinolin-4-yl)methyl]-1-azoniabi-	
		2.3.2	cyclo[2.2.2]octane bromide	28
			cyclo[2.2.2]octane bromide	29
		2.3.3	Synthesis of (2S)-tert-butyl 2-amino-4-bromopent-4-enoate	31
		2.3.4	Conclusion	32
		Refer	ences	33
3	Asy	mmetr	ic Alkylation or Amination of Allylic Esters	35
	3.1	Synth	esis and application in palladium-catalysed asymmetric	
		allylic substitution of enantiopure cyclic		
		β-imi	nophosphine ligands	
		Maria	a Zablocka, Marek Koprowski, Jean-Pierre Majoral,	
		Math	ieu Achard and Gérard Buono	36
		3.1.1	Synthesis of (2,6-dimethyl-phenyl)-(1-phenyl-2,3,3a,8a-tetrahydro-1H-1-phospha-cyclopenta[α]inden-8-ylidene)-	
			amines $1R_p$	36
		3.1.2	Synthesis of (E)-Methyl 2-carbomethoxy-3,5-diphenylpent-	
			4-enoate	37
		3.1.3	Synthesis of benzyl(1,3-diphenylprop-2-enyl)amine	39
		3.1.4	Conclusion	40
		Refer	rences	40
	3.2		VH,10H,10'H,11H,11H',13H,13'H,14H,14'H,15H,15'H-	
			orotricosane-12,12'-diyl)bis[(4S)-4-phenyl-2-oxazoline	
			igand for asymmetric palladium-catalysed alkylation of	
		-	c acetates in fluorous media	
		Jérôn	ne Bayardon and Denis Sinou	40

CONTENTS vii

		3.2.1	Synthesis of 2-iodo-1-(1H,1/H,2H,2/H,3H,3/H-northypropertyl) 2 propertyl	41
		3.2.2	perfluorooctyl)-3-propanol	41
			1-propanol	42
		3.2.3	Synthesis of 3-(1H,1'H,2H,2'H,3H,3'H-perfluorooctyl)-	
			1-iodopropane	43
		3.2.4	Synthesis of (9H,9'H,10H,10'H,11H,11'H,13H,13'H,	
			14H,14'H,15H,15'H-perfluorotricosane-12,12'-diyl)-	
		225	bis-[(4S)-4-phenyl-2-oxazoline]	44
		3.2.5	Synthesis of (<i>E</i>)-Methyl 2-carbomethoxy-3,5-diphenylpent-4-enoate	45
		3.2.6	Conclusion	45
			ences	47
	3.3		synthesis of new axially chiral diphosphine complexes	47
	5.5		ymmetric catalysis	
			ias Lotz, Gernot Kramer, Katja Tappe and Paul Knochel	47
		3.3.1	Synthesis of (S_{FC}) -1- $[(S)$ -p-tolylsulfinyl]-	
		3.3.1	2-[(o-diphenylphosphino)phenyl]ferrocene	47
		3.3.2	Synthesis of (S_{FC}) -1-diphenylphosphino-	7,
		2.2.2	2-[(o-diphenylphosphino)phenyl]ferrocene	49
		3.3.3	Conclusion	50
		Refere	ences	51
	3.4	Chiral	ferrocenyl-imino phosphines as ligands for	
			ium-catalysed enantioselective allylic alkylations	
		Pierlu	igi Barbaro, Claudio Bianchini, Giuliano Giambastiani	
		and A	ntonio Togni	51
		3.4.1	Synthesis of the precursor (R) -1- $[(S)$ -2-bromoferrocenyl]	
			ethyldiphenylphosphine	52
		3.4.2	Synthesis of key precursor (R) -1- $[(S)$ -2-formylferrocenyl]	
			ethyldiphenylphosphine	53
		3.4.3	Synthesis of (R) -1- $[(S)$ -2-ferrocenylidene-ethyl-	
		2 4 4	imine]ethyldiphenylphosphine	54
		3.4.4	Conclusion	55
		Refere	ences	56
4	Suzi	uki Cou	upling Reactions	59
	4.1	Pallad	ium-catalysed borylation and Suzuki coupling (BSC) to	
		obtain	β-benzo[b]thienyldehydroamino acid derivatives	
		Ana S.	. Abreu, Paula M. T. Ferreira and Maria-João R. P. Queiroz	60
		4.1.1	Synthesis of the E and Z isomers of the methyl ester of	
			N-tert-butoxycarbonyl-β-bromodehydroaminobutyric acid	61
		4.1.2	Synthesis of the methyl ester of <i>N</i> -tert-butoxycarbonyl-	
			(Z) -[β -(2,3,7-trimethylbenzo[b]thien-6-yl]dehydro-	
			aminobutyric acid	62

viii CONTENTS

	mile communication of the comm	64		
4.2	References	64		
	and arylboronic acids: synthesis of 4-arylcoumarin compounds			
	Jie Wu, Lisha Wang, Reza Fathi and Zhen Yang	64		
	4.2.1 Synthesis of 4-tosylcoumarins	65		
		65		
	4.2.3 Conclusion	66		
		66		
4.3	Cyclopropyl arenes, alkynes and alkenes from the in situ generation			
	of B-cyclopropyl-9-BBN and the Suzuki-Miyaura coupling of			
	aryl, alkynyl and alkenyl bromides	6 7		
	1	67		
		67		
		69		
4.4	References	69		
4.4	palladium-catalysed sequential borylation of a vinyl			
	electrophile by a diboron and cross-coupling			
	with a distinct vinyl electrophile			
	Tatsuo Ishiyama and Norio Miyaura	70		
	4.4.1 Synthesis of 2-(1-cyclopentenyl)-1-decene	70		
		73		
	References	74		
4.5	Pd(OAc) ₂ /2-Aryl oxazoline catalysed Suzuki coupling reactions			
	of aryl bromides and boronic acids			
	Bin Tao and David W. Boykin	74		
	4.5.1 Synthesis of 4-methoxybiphenyl	75		
	4.5.2 Conclusion	76		
	References	77		
4.6	Palladium-catalysed reactions of haloaryl phosphine oxides:			
	modular routes to functionalised ligands Colin Baillie, Lijin Xu and Jianliang Xiao	77		
		11		
	4.6.1 Synthesis of 2-diphenylphosphinyl-2'-methoxybiphenyl via Suzuki coupling	78		
	4.6.2 Synthesis of 2-diphenylphosphino-2'-methoxybiphenyl	79		
	4.6.3 Conclusion	80		
	References			
4.7	Bulky electron rich phosphino-amines as ligands for the	80		
	Suzuki coupling reaction of aryl chlorides			
	Matthew L. Clarke and J. Derek Woollins	81		
	4.7.1 Synthesis of N-di-isopropylphosphino- <i>N</i> -methyl			
	piperazine	82		

CONTENTS ix

		4.7.2	Suzuki coupling reactions using isolated ligand and	02	
		472	Pd ₂ dba ₃ .CHCl ₃ as catalyst	83	
		4.7.3	In situ ligand preparation and application in Suzuki	84	
		171	coupling of 3-fluorobenzene with phenylboronic acid Conclusion	85	
		4.7.4		85	
	4.8		ences	03	
	4.8		tion of ketones, aryl amination and Suzuki-Miyaura cross		
			ing using a well-defined palladium catalyst bearing an erocyclic carbene ligand		
			las Marion, Oscar Navarro, Roy A. Kelly III and		
				86	
			P. Nolan		
		4.8.1	Synthesis of 1,2-diphenyl-ethanone by ketone arylation	86	
		4.8.2	Synthesis of dibutyl-p-tolyl-amine by aryl amination	88	
		4.8.3	Synthesis of 4-methoxybiphenyl	89	
		4.8.4	Conclusion	90	
		Refere	ences	90	
5	Hec	eck Coupling Reactions			
	5.1	_	lium-catalysed multiple and asymmetric arylations of		
	5.1		ethers carrying co-ordinating nitrogen auxiliaries:		
			esis of arylated ketones and aldehydes		
			Nilsson and Mats Larhed	92	
		5.1.1	Triarylation: synthesis of <i>N</i> , <i>N</i> -dimethyl-2-[1,2,2-(triaryl)		
		5.1.1	ethenyloxy]ethanamines with subsequent hydrolysis		
			furnishing 1,2,2-triaryl ethanones, Table 5.1	92	
		5.1.2	Terminal diarylation: synthesis of <i>N</i> , <i>N</i> -dimethyl-2-	72	
		3.1.2	[2,2-diarylethenyloxy]ethanamine with subsequent		
			hydrolysis furnishing diaryl ethanals Table 5.2	95	
		5.1.3	Asymmetric Heck arylation: synthesis of 2-aryl-)3	
		5.1.5	2-methylcyclopentanone	97	
		Concl	usion	99	
			ences	99	
	5.2		lium-catalysed highly regioselective arylation of	,,	
	0.2		on-rich olefins		
			Xu, Jun Mo and Jianliang Xiao	100	
		5.2.1	Synthesis of 1-acetonaphthone	100	
		5.2.2	Synthesis of 3-acetylbenzonitrile	100	
			lusion	104	
			ences	104	
	5.3		S)-tert-Butyl-2-oxazolin-2-yl]-2-(S)-(diphenylphosphino)	104	
	5.5		ene as a ligand for the palladium-catalysed intermolecular		
			metric Heck reaction of 2,3-dihydrofuran		
			G. Kilrov, Yvonne M. Malone and Patrick J. Guiry	104	
		10110		101	