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Preface

As the title suggests, Mathematical Foundations of Computer Science deals
with those topics from mathematics that have proven to be particularly rel-
evant in computer science. The present volume treats basic topics, mostly
of a set-theoretical nature: sets, relations and functions, partially ordered
sets, induction, enumerability, and diagonalization. The next volume will
discuss topics having a logical nature. Further volumes dealing with alge-
braic foundations of computer science are also contemplated.

We present the material in a way that is systematic, rigorous, and com-
plete. Our approach is straightforward and, we hope, clear, but we do not
avoid more difficult topics or sweep subtle points under the rug. Our goal
is to make the subject, as Einstein said, “as simple as possible, but not
simpler.”

In Chapter 1, we discuss set theory from an intuitive point of view, but
we indicate how difficulties arise and how an axiomatic approach might
solve these problems.

Chapter 2 presents relations and functions, starting from the notion of
the ordered pair. We emphasize the use of relations and functions as struc-
turing devices for data, particularly for relational databases.

In Chapter 3, we provide an introduction to partially ordered sets. We
define complete partial orders and prove results about fixed points of con-
tinuous functions, which are important for the semantics of programming
languages. In the final section of the chapter, we analyze Zorn’s Lemma.
This proposition may appear to be of remote interest for computer science;
nevertheless, results of real interest in computer science, such as connec-
tions between various types of partially ordered sets and fixed point results,
are based on the use of this lemma.

Chapter 4 is dedicated to the study of mathematical induction. We
present several versions of induction: induction on the natural numbers,
inductively defined sets, well-founded induction, and fixed-point induction.
Mathematical objects, such as formulas of propositional logic, grammars,
and recursive functions, important for computer science, receive special
attention in view of the role played by induction in their study.

In Chapter 5, we examine mathematical tools for investigating the limits
of the notion of computability. We concentrate on diagonalization, a proof
method originating in set theory that is an essential tool for obtaining
limitative results in the theory of computation.

vii



viil Preface

This volume is organized by mathematical area, which means that ma-
terial on the same Computer Science topic appears in more than one place.
Readers will find useful applications in algorithms, databases, semantics
of programming languages, formal languages, theory of computation, and
program verification.

There are few specific mathematical prerequisites for understanding the
material in this volume, but it is written at a level that assumes the math-
ematical maturity gained from a good mathematics or computer science
undergraduate major. Many of the applications require some exposure to
introductory computer science.

Each chapter contains a large number of exercises, many with solutions
(which we regard as supplements).

We would like to thank Lynn Montz, Suzanne Anthony and Natalie John-
son of Springer-Verlag for their attention to our manuscript and Karl Berry,
Rick Martin, and James Campbell of the Computer Science Laboratory at
UMass-Boston for maintaining the systems which allowed us to produce
this book. Finally, the authors would like to acknowledge the many judi-
cios remarks and suggestions made by Professor David Gries.
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1

Elementary Set Theory

1.1 Introduction

1.2 Sets, Members, Subsets
1.3 Building New Sets

1.4 Exercises and Supplements
1.5 Bibliographical Comments

1.1 Introduction

The concept of set and the abstract study of sets (known as set theory)
are cornerstones of contemporary mathematics and, therefore, are essential
components of the mathematical foundations of computer science. For the
computer scientist, set theory is not an exotic, remote area of mathematics
but an essential ingredient in a variety of disciplines ranging from databases
and programming languages to artificial intelligence.

Set theory as it is used by working mathematicians and computer sci-
entists was formulated by Georg Cantor! in the last quarter of the 19th
century. Cantor’s approach led to difficulties that we will mention briefly
in this chapter. The apparent solution to these difficulties requires an ax-
iomatic approach, which we will allude to but not cover in detail.

In this chapter, we discuss sets and membership and examine ways of
defining sets. Then, we introduce methods of building new sets starting
from old ones and study properties of these methods.

1.2 Sets, Members, Subsets

Cantor attempted to define the notion of set as a collection into a whole?
of definite, distinct objects of our intuition or our thought. The objects are
called elements or members of the set.

!The German mathematician Georg F. L. P. Cantor was born on March 3,
1840, in St. Petersburg, Russia, and died on January 6, 1918, in Halle, Germany.
He was affiliated with the University of Halle beginning in 1869. Cantor’s main
contribution was the initial development of modern mathematical set theory.

2Zusammenfassung zu einem Ganzen.



2 1. Elementary Set Theory

This definition does not satisfy the normal requirements of logic, which
insist that a newly defined concept be a particularization of an already
defined more general concept. Indeed, the term “collection” used in the
Cantorian definition is hardly different from the defined term “set.” There-
fore, we shall regard the notion of set as being a primitive concept, i.e., a
general notion that is understood intuitively but not defined precisely and
can be used in defining other more particular notions. Hence, motivated
by Cantor’s “definition,” we adopt the rather vague idea that a set is a
collection of “things” that are called the elements of the set.

The primary concepts on which set theory is based are set and member-
ship. Since we are viewing a set as a collection of objects, for any set S and
object a, either a is one of the objects in S or it is not. In the former case,
we use any of the following phrases: “a is a member of S,” “a is an element
of §, “a is contained in S,” or “S contains a,” and we write a € S. This
use of the symbol € was introduced by the Italian mathematician Giuseppe
Peano?® because the symbol € is similar to the first letter of the Greek word
¢oTi which means “is.” We write a € S to denote that a is not a member
of the set S.

Note that we did not consider the notion of “object” among the primary
notions of set theory. Mathematicians have found that mathematics can be
developed based on set theory, assuming that every element of every set
is itself a set. For example, we shall see later (in Chapter 4) that every
natural number can be considered to be a set. A similar point of view can
be adopted for all the other common mathematical objects. Therefore, no
other objects than sets need be considered, and when we use the term
“object,” this term can be interpreted to mean “set.”

Sometimes, in order to emphasize that the elements of a set C are them-
selves sets, we refer to C as a collection of sets.

Two sets are the same if they have the same elements. Although this
fact seems intuitively clear, it is important enough to be singled out as a
principle of sev theory.

Principle of Extensionality. Let S and T be two sets. If for
every object a we have a € S if and only if a € T, then S =T.

Sets can be specified in several ways. One method is to list explicitly the
members of the set. If z1,...,z, are the elements of S, we denote S by

{Il,... ,1,‘,,}.

®Giuseppe Peano was born on August 27, 1858, in Cuneo, Italy, and died
on April 20, 1932, in Turin. He taught mathematics at the University of Turin
starting in 1884. Peano is one of the founders of symbolic logic and made impor-
tant contributions to the general theory of functions. His main work, Formulario
Mathematico, published between 1894 and 1908, was an inspiration for further
work in the foundations of mathematics done by Russell and Whitehead and the
Bourbaki group.
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This notation is justified by the principle of extensionality because any
other set that has the same elements is the same set. For instance, consider
the set whose members are 1,4,9, and 16. We denote this set by

{1,4,9,16}.

If we cannot explicitly list all of the elements of a set we can use various
suggestive extensions of the notation just given. For example, the set N of
natural numbers can be denoted by

{0,1,2,...}.

On the other hand, a set can also be specified by stating a characteristic
condition, that is, a condition satisfied by all members of S and not satisfied
by any other object. Consider, for instance, the condition

n is a natural number less than 20 that is a perfect square.

It is easy to see that this is a characteristic condition for the members of
the set S defined above: all members of S satisfy the condition, and every
object that satisfies the condition is a member of S. Also, note that we
may have several characteristic conditions for a set. For instance, the set
S can alternatively be specified as consisting of those sums less than 20 of
consecutive odd natural numbers starting with 1.

By the principle of extensionality

1. the set {1,4,9, 16},

2. the set that consists of all natural numbers that are perfect squares
and are less than 20, and

3. the set of natural numbers that are sums of consecutive odd natural
numbers starting with 1 and are less than 20,

are the same.
In (2) and (3) we have already used implicitly another principle, namely,
the

Principle of Abstraction. Given a condition that objects
satisfy or do not satisfy, there is a set that consists of the objects
that satisfy the condition.

If K is a characteristic condition that allows us to define the set S, we
could denote S by

{z such that z satisfies K}.
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In practice, we replace the phrase “such that z satisfies” by “|” and thus

we write
{z | K}.

The principle of abstraction is a working tool for everyday mathematics.
However, its unrestrained application generates contradictions. Suppose,
for instance, that, using this principle, we attempt to define the “set” R of
all sets that are not elements of themselves,

R = {z|z ¢ z}.
We can ask whether R belongs to itself. There are two possible answers:
1. RERor
2. R¢R,

and we can prove that both yield contradictions. Indeed, in the first case,
the definition of the set R implies that R ¢ R, which conflicts with the
premise of this case. In the second case, the same definition implies R € R;
hence, we again obtain a contradiction.

The fact that the principle of abstraction allows this definition, which
leads to an immediate contradiction, is known as Russell’s paradox after
the logician and philosopher Bertrand Russell  who discovered it.

Logicians have formulated a more restrictive version of this principle,
which appears to eliminate these difficulties, namely, the

Principle of Comprehension. Given a condition that objects
satisfy or do not satisfy, and a set U, there is a set S that consists
of the elements of U that satisfy the condition.

The difference between the principles of abstraction and comprehension
is that in the latter we build a new set starting from an existing set U
by collecting those members of U that satisfy the characteristic condition,
while in the former we collect all objects satisfying a characteristic condition
without restricting the search to the members of a set.

When using the principle of comprehension, we denote the set of those
elements of U that satisfy the condition K by

{z e U |K}.

*Bertrand A. W. Russell, 3rd Earl Russell, was born in 1872 in Trelleck,
Monmouthshire ,and died in 1970 near Penrhyndendraeth, Marioneth, in Wales.
Russell was one of the major figures of 20th-century philosophy. His work is
especially important for philosophical logic and for the theory of knowledge. His
most important mathematical work, Principia Mathematica, written with A. N.
Whitehead, was published between 1910 and 1913.
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For instance, we could denote the set S considered above either as
{n € Njn is a perfect square and n < 20}

or
{n € N|n is a sum of consecutive odd natural

numbers starting with 1 and n < 20}.

Note that using the principle of comprehension, one cannot duplicate
Russell’s paradox because of the need to circumscribe the definition of R
to the elements of some set U. In fact, for each set U, one can define the
set

Ry={z€U|z ¢z}

however, the existence of this set does not lead to immediate contradiction.
If Ry € Ry, then Ry € U and Ry ¢ Ry, which is impossible, but if
Ry € Ry, then either Ry ¢ U or Ry € Ry, and this is not contradictory;
we merely conclude that Ry ¢ U (and Ry ¢ Ry). Note that we have just
shown that for any set U there is another set (namely, Ry) that is not a
member of U. Consequently, there is no universal set V such that every set
is a member of V.

In formal set theory, the principle of abstraction is rejected, because it
leads to Russell’s paradox, and the principle of comprehension is used in-
stead. The paradoxical nature of the “set” R is taken to show that there
is no such set. Of course, using the principle of comprehension requires, in
some cases, additional principles to assert the existence of the set U. This
leads to very tedious arguments. To avoid such arguments for now, we con-
tinue to use the principle of abstraction; however, in all of our arguments,
the use of the principle of abstraction can be replaced by the principle of
comprehension plus additional set existence principles.

Definition 1.2.1 If S and T are two sets such that every element of S is
an element of T, then we say that S is included in T or that S s a subset
of T, and we write SCT.

If S is not a subset of T, we write S € T'.
Theorem 1.2.2 For any sets S, T, and U,
1. SCS;
2. if SCT and TC S, then S=T;
3. if SCT and T CU, then SCU.

Proof: Suppose that S C T and T'C S. Then, every element of S is an
element of T', and every element of T is an element of S. This means that S
and 7" have the same elements, and hence, by the principle of extensionality,
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S = T. This shows the second part of the theorem. The other two parts
are even easier and are left to the reader. I

Part (2) of Theorem 1.2.2 provides the standard way of showing that two
sets are equal; namely, show that each set is a subset of the other.

Definition 1.2.3 If S and T are sets such that S C T and S # T, then
we say that S is strictly included in T. We shall denote this by S C T. If
S s not strictly included in T', we write S ¢ T.

Theorem 1.2.4 For any sets S, T, and U,
1.5¢S;
2.if SCT and T CU, then SC U,
3. ifSCT,thenT ¢ S.

Proof: Since S = S, we cannot have S C S.

Suppose that S C T and T C U. Then, S C T and T C U, so, by the
third part of the previous theorem, we have S C U. If S = U, then we have
S CT and T C S, and hence by the second part of the previous theorem,
S =T, which contradicts S C T. Therefore, S C U.

Finally, suppose that SC T. If T'C S, then we have SCT and T'C S,
which implies S = T, contradicting S C 7. I

There exists a set with no members. This set is called the empty set and
is denoted by @. The principle of extensionality implies that there is only
one empty set. Furthermore, the empty set is a subset of every set.

If S is a set, we can build a new set by considering the set whose unique
member is S. We denote this set by {S}, and we refer to it as a singleton.
In particular, we can form the set {#}, and this set is not empty since it
contains @ as a member.

Definition 1.2.5 If S is a set, then the power set of S is the set which
consists of all the subsets of S. We denote the power set of S by P(S).

Example 1.2.6 Let S = {a,b,c}. Then,
P(S) = {0,{a}, {b},{c}, {a,b},{a,c},{b,c},{a,b,c}}.

We also have

P(9) = {0}.

Note that for every set S, @ € P(S), and so P(S) is never empty.

We wish to define what is meant by a property of the elements of a set.
There are two points of view: intensional and extensional. The intensional
viewpoint considers a property of the elements of a set to be a characteristic
condition that the elements of the set may or may not satisfy. We have seen
already that different characteristic conditions may define the same set, i.e.,
have the same extension. The extensional viewpoint regards a property as
being given by its extension, and this is the point of view we adopt.
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Definition 1.2.7 Let S be a sel. By a property of the elements of S, we
mean a subset of S.

From this perspective, the power set of a set S consists of all properties
of the elements of S. Note that we regard any subset of a set as giving a
property of the elements of the set even if we have no way of expressing a
characteristic condition for the property.

If P is a property of the elements of a set S, we frequently use the phrases
“P(z) is true” and “P(z) holds” to mean z € P. The phrase “we will show
P(z)” means “we will show that £ € P”.

Example 1.2.8 The property of being an odd natural number is given by
the set
D= 11,35}

The property of being an even natural number is given by the set
E ={0,2,4,86,...}.

The property of being either equal to 0 or the sum of two odd natural
numbers is also given by F, and therefore from our extensional point of
view, these properties are the same, although from the intensional point of
view they are different.

Example 1.2.9 Let M be the collection of all people. Having age 40 is
a property of the elements of the set M while having average age 40 is a
property of the elements of P(M), that is of the subsets of M. This is an
important distinction in databases where one should differentiate between
properties of individual objects and properties of aggregates of objects.

In addition to the notation N introduced for the set of natural numbers,
we introduce here notations for several other important sets that we will
use throughout this book.

P is the set {1,2,3,...} of positive natural numbers.
Z is the set {...,—1,0,1,...} of integers.

Q is the set of rational numbers.

R is the set of real numbers.

Note that
PCNCZCQCR.



