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changed our perspective on reality and has come to play a criti-
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onstrations, and experiments, these 24 fascinating lectures are a
great way to master the secrets of this extraordinary discipline.
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The developmental pathis of the human eye—shown on the cover in a colored scanning electron micrograph during the eighth week of gesta-
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Technology in Its Place

Few would question the signifi-
cance of scientific and engineer-
ing advances made possible by tech-
nology, whether it be in the ability
to image smaller and smaller bits of
matter or analyze larger and
larger sets of data. None-
theless, I often hear—par-
ticularly when hanging
around field geologists
of a certain age—that
something is lost when
electronics intervene
between investigator
and subject.
That idea lurks
at the core of Darin
Wolfe’s argument in “To
See for One’s Self” (pages 228—
235). Wolfe documents a decline in the rate of au-
topsies in the U.S. from about 50 percent of hospital
deaths in the 1950s to about 6 percent at present. He
points out that many factors have contributed to the
decline, including technological developments such
as virtual autopsy that are making it less necessary.
But he also finds that as anatomical dissection has be-
come a lesser part of medical education, the distance
between physician and the physical manifestations of
disease has grown, depriving medical students of a
valuable source of understanding.

Alex (Sandy) Pentland has made a career of un-
derstanding human communication, especially the
nonverbal. But curiously enough, as he relates in “To
Signal Is Human” (pages 204-211), technology allows
his team to quantify such signaling. Employing mo-
tion sensors, cameras and recorders, Pentland’s group
is revealing how it is that we manage to make valid

American Scientist

David Schoonmaker  Editor

Morgan Ryan Managing Editor Katie Lord ~ Associate Publisher
Eric Tolliver Marketing Associate

Fenella Saunders  Senior Editor
Catherine Clabby  Associate Editor

Mia Smith  Editorial Associate

Barbara J. Aulicino  Art Director

Tom Dunne  Assistant Art Director
Brian Hayes  Senior Writer
Christopher Brodie ~ Contributing Editor
Rosalind Reid  Consulting Editor

Elsa Youngsteadt ~Contributing Editor

CORRESPONDENCE

American Scientist
P.O. Box 13975

SCIENTISTS BOOKSHELF

Jerome F. Baker  Publisher

ADVERTISING SALES

Kate Miller  Advertising Manager
advertising@amsci.org ® 800-282-0444

Research Triangle Park, NC 27709
919-549-0097 * 919-549-0090 fax

judgments about others at least 70 percent of the time.
Moreover, the team has identified a catalog of behav-
jors that allow them to predict, through observation,
who is most likely to be a successful leader.

Yet sometimes seeing can be deceiving. As Richard
Woo explains in “Revealing the True Solar Corona”
(pages 212-219), astrophysicists attempting to un-
derstand the Sun’s atmosphere may have long been
misled by what their eyes told them. Vision, he notes,
is far from an ideal empirical tool; the brain constructs
images from data in ways that match our experiences
and expectations. Because the human eye and its pro-
cessor are unable to integrate the vast range of bright-
ness in the solar corona, investigators incorrectly con-
cluded that the solar wind emanates from particular
regions corresponding to the white light we perceive.
Data from instruments, however, now document the
broad emission of the wind from the entire solar disk.
So we've come full circle: Sometimes it may be best
not to see for one’s self.

urn to page 182, and you'll notice among the Let-

ters to the Editors a green box describing some
of the magazine’s digital offerings. American Scientist
Online is considerably more than an HTML version
of what you hold in your hands. For example, more
than 12,000 readers now receive Science in the News
Weekly every Monday as an e-mail. SitNW, as we call
it, compiles entries from Science in the News Daily
and comments on them. One of its more popular fea-
tures is a ranking of the top three stories of the week,
but I personally most look forward to my weekly dose
of Mark Heath science cartoon. You may also be inter-
ested in online-only interviews with prominent sci-
entist/writers about their communication efforts and
reading proclivities. And finally, I confess with some
reluctance: We now Tweet too.—David Schoonmaker
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LETTERS TO THE EDITORS -

The Wrong Culprit?

To the Editors:

In his interesting “Short History of Hy-
drogen Sulfide” (January-February),
Roger P. Smith mentions strontium
sulfide as a potential source of the hy-
drogen sulfide in homes where Chi-
nese drywall was installed in South
Florida, New Orleans and elsewhere.
It's hard for this retired chemist to
conceive that any source of gypsum
contains sufficient strontium to gener-
ate so large a problem. That's espe-
cially so when a primary raw material
is 25 percent sulfur.

Anyone who has ventured into stag-
nant areas of the many swamps in Flor-
ida, for instance, has noted the odor
of so-called swamp gas. The origin of
this hydrogen sulfide is well known.
It comes from the action of anaerobic

bacteria on organic material, using the
oxygen in sulfate ions for metabolism,
reducing sulfur to hydrogen sulfide.

I propose an alternative explanation
regarding the drywall. The gypsum
there, either intentionally or naturally,
likely was contaminated with some pro-
portion of organic material. That con-
tamination in an oxygen-free location,
such as the interior of drywall, was then
exposed to water, thanks to the high
humidity of the subtropics. That mix, at
a suitably warm temperature, provides
the essential environment for anaerobic
bacteria to do their thing.

As a retired chemist, [ have no access
to a laboratory to conduct simple tests
to verify my proposal. I hope someone
else will.

Barton Milligan
Fort Lauderdale, FL.
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Dr. Smith responds:

I am doubly indebted to Dr. Milligan.
First he points out the controversy sur-
rounding the assertion that strontium
sulfide is the source of hydrogen sulfide
in homes damaged by Chinese wall-
board. Google “Chinese wallboard” and
“strontium sulfide” for a sampling of
opinions. Difficulty with the idea that
wallboard could contain enough sulfide
to account for “so large a problem” is
shared by many.

Secondly, Dr. Milligan reminds us of
an important source of environmental
hydrogen sulfide, namely the reduction
of sulfate by anaerobic bacteria, often in
swamps. Hence, the origin of the term
“swamp gas.” Although he proposes
an interesting idea, my question is this:
How anaerobic do conditions have to
be for those bacteria to do their thing?
It comes down to how low the oxygen

~ ILLUSTRATION
~~CREDITS" -,
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Engineering
| Page 193 Barbara Aulicino
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Figures 2,3,4,7 Tom Dunne ‘
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Development Influences Evolution
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tension is in the interior of the wall-
board? Wallboard must have a certain
porosity to let the hydrogen sulfide out,
which in turn would allow oxygen to
come in.

At least we agree that hydrogen sul-
fide is the most likely culprit; such accord
is a good and sometimes rare thing.

Harness DNA Memory

To the Editors:

[ was quite intrigued by Kurt D. Bollack-
er’s recent column, “Avoiding a Digital
Dark Age” (March-April). The article
pointed out two substantial shortcom-
ings in storing information digitally.
First, a single error in a digital record-
ing can have rather dramatic effects.
Thus, one needs not only to continually
back up and copy digital information
but also to do this in an error-correcting
fashion. Second, when copying digital
information, one has to be mindful that
computer formats keep changing. It is
important to keep current with formats
and remain backwards compatible.

I would like to propose a somewhat
whimsical suggestion for overcoming
these two issues. Perhaps we could
encode digital information that we

wish to preserve in the DNA of bac-
teria—more specifically, in the regions
between genes. Note, first of all, that
the information would be recorded
in a most fundamental and universal
format, the natural DNA code of A,
G, C and T. Secondly, because bacteria
naturally replicate, backups of the in-
formation would be made in an error-
correcting fashion using DNA poly-
merase. Although this copying is subject
to some random mutation that evades
correction, we could increase the fidel-
ity by averaging the “readout” over a
population of bacteria, rather than tak-
ing it from a single individual.

Mark Gerstein
Yale University

To the Editors:

Kurt Bollacker’s problem with restoring
his file backups is an excellent example
of the importance of free and open-
source software (FOSS). Dr. Bollacker
lost the ability to recover his files be-
cause he had lost his copy of the propri-
etary software that created the backup.
Also, the company that created the soft-
ware no longer exists and he wasn't able
to locate the software on the Internet.

While much FOSS software comes
without a price tag, the term “free” in
this context refers not to the cost but
to the principle that the software can
be copied, studied, changed and im-
proved. The availability of source code
avoids the common problem that the
type of machine that ran the original
software no longer exists. The source
code can be recompiled or rewritten for
another machine.

Devlin Gualtieri
Ledgewood, N.J.

Dr. Bollacker responds:

I believe that open-source software is a
necessary part of solving the problem
of digital data preservation. There are
many benefits and advantages to FOSS
that help the world of software develop-
ment and data handling. The mutability,
lack of licensing cost and didactic quali-
ties of FOSS make our world a better
place. But these benefits are not directly
related to digital data preservation. The
main virtue of open-source software in
data preservation is that it can be thought
of as highly precise (if not easy to read)
documentation for digital formats. We
don’t need a manual if the software can
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be recompiled to read old data and, ide-
ally, convert it into new formats. Even if
ancient software can no longer be run,
the source can allow its functionality
to be duplicated in new code. The need
for such documentation, and thus the
need to preserve source code, is dimin-
ished if the data formats are very simple
and/or are highly “self documenting”
(as are some XML schemas). Ideally, the
formats would be self documented, and
the source code would still be around,
giving us a nice bit of redundant protec-
tion.

Can't Break that Law

To the Editors:

The passive engulfment model for lunge
feeding in “The Ultimate Mouthful” by
Jeremy Goldbogen (March-April) ap-
pears to violate the law of conservation
of momentum because it shows the
whale’s speed dropping to zero. As a
most basic first approximation of the
process, if an average whale engulfs a
mass of water equal to its own mass, the
velocity after engulfment should be one
half the velocity before engulfment. Fac-
toring in active swimming and changes
in drag during engulfment will modify
that result, but any model that stops a
whale dead in its tracks should have
been stopped dead in its tracks.

Peter Kaiteris
West Hempstead, NY

Dr. Goldbogen responds:

Peter Kaiteris is correct. The “passive
engulfment” scenario of Figure 9 indeed
shows a whale that is suddenly deceler-
ating to a zero speed at the moment of
complete buccal cavity filling—clearly
an unrealistic sequence of events. But
this never occurred in our simulations
because they were instructed to auto-
matically terminate whenever the cavity
filled up. Such an instantaneous drop in
speed was included to show that “pas-
sive engulfment” fails. Our computer
model did account for the momentum
transfer between whale and engulfed
mass, as can be seen in the “active en-
gulfment” graph shown in that same
figure. In this case, the whale’s and en-
gulfed water’s final speeds (that is, by
the time the mouth closes) are indeed
at about half the whale’s initial speed.
That is to be expected because most of
the force sustained by the whale comes
from the reaction to its forward push of
the engulfed water.

Water Molecules Not Repelled

To the Editors:

The Science Observer article “Sunburned
Ferns?” (March-April) invokes a wide-
spread scientific misconception. The
error is the idea that water is repelled
by some surfaces, in this case ginkgo
leaf surfaces. In fact, water molecules
and all hydrophobic substances attract
one another, although weakly. The false
belief in repulsion traces to the original
use of the misleading descriptive term
“hydrophobic.” A valid exposition of the
interaction of water with hydrophobic
substances is found in a 2002 Nature ar-
ticle by David Chandler. Chandler states,
“the term hydrophobic (water-fearing) is
commonly used to describe substances
that, like oil, do not mix with water. Al-
though it may look as if water repels oil,
in reality the separation of oil and water
in ambient conditions is not due to re-
pulsion ... but to particularly favorable
hydrogen bonding between water mol-
ecules.” Also widely in current use is the
term “superhydrophobic,” referring to
surfaces that often are described, errone-
ously, as repelling water. A 2006 Naino
Letters paper by L. Zhai et al. deals with
this topic. The authors explain, “Water
repellent in the context of our work sim-
ply means that water droplets placed on
the surface will roll off freely at a small
angle. This is how we and many others
define the superhydrophobic state (con-
tact angle greater than 150° coupled with
a small rolling angle).” Not surprisingly,
the forces involved—cohesion, adhesion,
and gravity—areall attractive.

J. Lee Kavanau
University of California at Los Angeles

How to Write to American Scientist

Brief letters commenting on articles
that have appeared in the magazine
are welcomed. The editors reserve
the right to edit submissions. Please
include a fax number or e-mail ad-
dress if possible. Address: Letters to
the Editors, American Scientist, P.O.
Box 13975, Research Triangle Park, NC
27709 or editors@amscionline.org.

' Erratum ‘
‘ In “The Ultimate Mouthful: Lunge Feed-
ing in Rorqual Whales” (March-April), the

‘ cover image and Figure 2 should have been ‘

labeled as fin whales.
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Designing Minds

Edward A. Wasserman and Mark S. Blumberg

HE BASIC ARGUMENT of intel-
. ligent design was famously set
forth in the watchmaker analogy of
William Paley in 1802: The complex-
ity and functionality of a watch im-
ply a watchmaker; analogously, the
complexity and functionality of living
things also imply a designer, albeit one
vastly more potent than a mere watch-
maker. This argument rests on a sim-
ple analogy between the design of hu-
man artifacts and the design of natural
forms. For the analogy to work, we
must first accept that we design our
inventions with purpose and foresight.
On this point, most evolutionists and
creationists agree. What distinguish-
es these two camps is that, when ac-
counting for the origin of living things,
proponents of intelligent design sum-
mon a divine creator, whereas evolu-
tionists credit natural selection. Thus,
evolutionists share with creationists
the same understanding of design; they
differ only in how they invoke it.
Discussions of design are promi-
nent in the writings of evolutionists
from Darwin to Dawkins. Ponder-
ing the implications of his theory of
natural selection for Paley’s “old ar-
gument of design in nature,” Charles
Darwin wrote in his autobiography
that we can no longer argue that “the
beautiful hinge of a bivalve shell must
have been made by an intelligent be-
ing, like the hinge of a door by man.
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How should we
explain the origins of
novel behaviors?

There seems to be no more design in
the variability of organic beings and
in the action of natural selection, than
in the course which the wind blows.
Everything in nature is the result of
fixed laws.” A century later, Richard
Dawkins pursued the issue of design
and divided the world “into things
that look designed (such as birds and
airliners) and things that don’t (rocks
and mountains).” He further divided
those things that look designed into
“those that really are designed (sub-
marines and tin openers) and those
that aren’t (sharks and hedgehogs).”

What did Dawkins mean when he
wrote of things that “really are de-
signed”? In The Blind Watchmaker, he
provided a clear answer: “All appear-
ances to the contrary, the only watch-
maker in nature is the blind forces of
physics....A true watchmaker has fore-
sight: He designs his cogs and springs,
and plans their interconnections, with
a future purpose in his mind’s eye”
[emphasis added].

Such uncritical acceptance of pur-
pose and foresight in human design
may well be unwise. After all, do we
really know how door hinges and
can openers were created? In fact,
we may know less about the origins
of these everyday contrivances than
we know about the origins of bivalve
shells, sharks and hedgehogs. By at-
tributing the origins of animals and
artifacts to different kinds of design-
ers—one blind, the other intelligent—
both Darwin and Dawkins lapse into
the same kind of “designer thinking”
that ensnared creationists like Paley.
Such thinking rests on the familiarity

and deceptive simplicity of mentalis-
tic explanations of behavior, as when
Dawkins uncritically appeals to the
foresight and purpose of the watch-
maker rather than entertaining possi-
bly deeper questions about the origins
of the watch. He may be giving human
designers too much credit.

Form Follows Failure

The engineer Henry Petroski has writ-
ten extensively and convincingly about
our often misguided characterizations
of the origins of human inventions. In
The Evolution of Useful Things (1993),
Petroski argues that artifacts “do not
spring fully formed from the mind
of some maker but, rather, become
shaped and reshaped through the
(principally negative) experiences of
their users....” In short, form follows
failure, not function.

And what about those failures? It
is all too easy to forget that the first
attempts at flight featured impossible
aircraft with flappable wings, man-
of-war sails, and box-kite frames. Do
we see the origins of today’s jumbo
jets in those early, comical failures?
Similarly, do we appreciate the knowl-
edge gained by bridge builders from
studying the undulating destruction of
the Tacoma Narrows Bridge in Wash-
ington or, more recently, the wobbling
of the Millennium Bridge in London?
Do we understand that even the most
tragic failures—such as the Hyatt Re-
gency walkway collapse in Kansas
City or the Challenger space shuttle
explosion—are the consequences of
human tinkering on a grand scale?
Beginning with the very first glimpse
of a problem or an opportunity, such
failures—whether large or small, trag-
ic or comic—prompt the fine-tuning
and retrofitting that, over time, have
shaped even our greatest engineering
achievements, from Egyptian pyra-
mids to medieval cathedrals to sus-
pension bridges to spacecraft.
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In 2003, a wild chimpanzee named JJ was observed by Shinya Yamamoto and colleagues in New Guinea using a long, rigid tool to harvest carpenter
ants (left). This was the first observation of ant-fishing in trees. J] succeeded in three of 14 attempts, with three painful bites along the way. Two years
later, J] was seen using a shorter, more flexible wand to feed without being bitten ( right). Was this change the result of trial and error or foresight?

It is through this plodding process
that today’s designs—typically instan-
tiated in the form of a detailed blue-
print—embody all of the hard, painful,
but often unacknowledged lessons of the
past. Most of us are ignorant of that
history, yet we glibly proclaim that the
final products were intelligently de-
signed, thereby perpetuating the myth
of the creative moment. We then carry
that myth forward and attribute each
new artifact to individual insight, cre-
ativity and genius. But this myth can-
not cheat reality; the failures just keep
coming, as most recently illustrated by
the massive worldwide recall of Toyo-
ta automobiles. As Petroski notes in To
Engineer Is Human (1985), despite their
mathematically precise understanding
of structural materials, engineers still
cannot “calculate to obviate the failure
of the mind.”

Because of the writings of Darwin,
Dawkins and other biologists, many of
us are now open to understanding the
organic world in evolutionary terms—
but are we equally willing to apply
such evolutionary thinking to that
last bastion of designer intelligence,
our minds? Curiously, just as Petroski
and others are painstakingly detail-
ing the origins of human inventions,
researchers are increasingly invoking
unsubstantiated mental processes to
explain complex human and animal
behaviors.

Insight About Insight
A salient recent example can be found
in a report in the Proceedings of the Na-
tional Academy of Sciences in Spring
2009, in which crows were observed
to fashion wire into hooks that were
then used to retrieve out-of-reach food
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items. These behaviors have been in-
terpreted by some authors as products
of this species’ creativity and insight.
In contrast, other scientists have in-
vestigated similar “insight” problems
in crows, monkeys and other animals;
but by focusing on the origins of these
behaviors, they have discovered the
critical learning experiences, as op-
posed to forethought, that gave rise
to them. Nonetheless, we seem to be
in the midst of a resurgence of faith
among some scientists that animal be-
havior can be explained by creativity,
insight and other mentalistic concepts.
For our part, we remain skeptical about
the utility of such groundless explana-
tions. Indeed, we are unconvinced that
creativity and insight are proper expla-
nations even for human behavior.

Of course, few people are unnerved
when the cognitive prowess of crows
or other animals is questioned. Things
get stickier when we express similar
skepticism about the human mind.
Yet as with the invention of human
artifacts, we see good reason to doubt
the prevailing belief that novel human
behaviors—what we might call behav-
joral inventions—are necessarily the
products of a designing mind.

Successful Flop
A celebrated case of human behavioral
invention lends credence to our view.
Dick Fosbury revolutionized the high
jump with a world-record bound of
7 feet, 4 Y4 inches, which earned him
a gold medal at the 1968 Olympics.
Some might suspect that his innova-
tion—the so-called Fosbury Flop—was
designed with purpose and foresight
in a single creative moment. In fact, it
unfolded over considerable time, be-

ginning in high school when Fosbury
used the outmoded “scissors” jump.
Urged by his coach to adopt the more
sophisticated “straddle,” his lanky
body failed to comply with his coach’s
wishes. When Fosbury reverted to the
“scissors,” he began to lift his hips to
reach higher altitude, thereby forcing
back his head and shoulders. In this
way, the flop evolved, not from de-
sign, but from a protracted trial-and-
error process that combined repeated

Until the Fosbury Flop (bottom) revolution-
ized high jumping, athletes used the “scis-
sors” or “straddle” (top). By Dick Fosbury’s
own account, the flop evolved without fore-
thought through a trial-and-error process.
After Fosbury won the gold medal at the 1968
Olympics in Mexico City, his flop quickly
dominated the sport. (Photograph at bottom
by Matthew L Romano/U.S. Navy.)



In this painting by Theodore Gericault (left),
Churchill Downs (right) rides poised in the monkey crouc
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jockeys in the 1821 Epsom Derby ride in a leisurely posture. A modern thoroughbred jockey at
h, a behavioral innovation that first appeared in the late 1800s but whose biome-

chanical benefits have only recently been demonstrated. (Photo at right by Jeff Kubina/Wikimedia Commons.)

effort with the biomechanics of Fos-
bury’s gangly physique. Here is how
Fosbury himself described this proc-
ess: “I began to lift my hips up and
my shoulders went back in reaction
to that. At the end of the competition,
I had improved my best by 6", from 5’
4" to 5' 10" and even placed third! The
next two years in high school, with my
curved approach, I began to lead with
my shoulder and eventually was going
over head first like today’s Floppers.”

Another example of human be-
havioral invention from the sporting
world—this one from thoroughbred
racing—further supports our view. A
recent report in Science carefully ex-
plained how the monkey crouch—the
currently dominant racing style, in
which the jockey rides poised above
the saddle leaning forward—promotes
faster racing times. At the expense of a
much more strenuous ride for the jock-
ey than the earlier, upright style, the
monkey crouch confers measurable bio-
mechanical benefits for the horse. No
one has yet suggested that the monkey
crouch was designed with purpose and
foresight to maximize biomechanical
efficiency. So how did it arise?

Some authors have credited two
American jockeys with bringing the
monkey crouch to England in the late
1800s. An English rider, Harding Cox,
may actually have adopted this riding
style a bit earlier. Critical to our pres-
ent considerations, Cox suggested in
his memoir the possible benefits that
the monkey crouch conferred: “When
hunting, I rode very short, and leant
well forward in my seat. When racing,
[ found that by so doing I avoided, to a
certain extent, wind pressire, which ... is
very obvious to the rider. By accentuat-
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ing this position, I discovered that my
mount had the advantage of freer hind
leverage. Perhaps that is why [ managed
to win on animals that had been looked
upon as ‘impossibles,” ‘back numbers,’
rogues and jades.”

Although the authors of the Science
report emphasize the biomechanical
benefit to the horse of having the jock-
ey rise from the saddle, and they de-
emphasize the role of decreased wind
resistance, Cox’s account provides a
key insight into this innovation’s true
origins. Specifically, decreased wind
resistance may have initially encour-
aged Cox’s forward adjustment, which
allowed his later accentuation of the
posture into the fully realized monkey
crouch. Like a scaffold that provides a
temporary structure for the construc-
tion of a building, Cox’s response to
wind pressure may have scaffolded his
behavioral transition to a novel riding
style—one that transformed modern
thoroughbred racing.

Inventive behaviors are common-
ly attributed to creativity, insight or
genius, but a far simpler explanation
may do. For the Fosbury Flop and the
monkey crouch, an elegant and plau-
sible way to understand the origins of
novel behaviors can be found in the
law of effect, which emerged a century
ago from the animal-behavior studies
of psychologist Edward Thorndike.
The law of effect states that success-
ful behavioral variations are retained and
unsuccessful variations are not. Impor-
tantly, this positively Darwinian pro-
cess exists entirely outside the realm
of purpose or foresight. If everything
in nature is the result of fixed laws,
as Darwin himself proposed, then
would he not also have marveled at

the explanatory power of the law of ef-
fect—which was not discovered until
several decades after his death—and
its compelling parallels with natural
selection?

Our prime point here is the impor-
tance of the search for origins. Darwin
has taught us that the search for the
origin of species reveals the action of
natural mechanisms that do not re-
quire guidance from a creative, intel-
ligent designer. Similarly, Petroski has
taught us to look beyond the romance
of the iconoclastic inventor and the
drama of the creative moment to ap-
preciate the real origins of human ar-
tifacts. Petroski’s insight should free
evolutionists from their continuing
dispute with creationists over where
to draw the line between things that
really are designed and things that only
appear to be designed. Belief in the ex-
istence of that false line only serves to
obscure the powerful selectionist pro-
cesses that are at work in producing so
many of the world’s creations—both
organic and synthetic.

Beyond the concerns of Darwin
and Petroski, we see additional fertile
ground for reshaping how we think
about the origins of behavioral innova-
tions. We have focused here on the Fos-
bury Flop and the monkey crouch, but
we could also have discussed the role
of serendipity in scientific discovery
or the developmental path by which
each of us learns to crawl, walk and
run. From our first days of life, we are
all inventors who discover by trial and
error how our growing bodies work
and move. As with organic evolution,
the development of behavior is indeed
a creative process, but it is one that un-
folds without purposeful design.
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TATISTICS IS THE BRANCH of ap-

plied mathematics that studies
ways of drawing inferences from lim-
ited and imperfect data. We may want
to know how a neuron in a rat’s brain
responds when one of its whiskers gets
tweaked, or how many rats live in Man-
hattan, or how high the water will get
under the Brooklyn Bridge, or the typi-
cal course of daily temperatures in the
city over the year. We have some data
on all of these things, but we know that
our data are incomplete, and experience
tells us that repeating our experiments
or observations, even taking great care
to replicate the conditions, gives more
or less different answers every time. It is
foolish to treat any inference from only
the data in hand as certain.

If all data sources were totally capri-
cious, there’d be nothing to do beyond
piously qualifying every conclusion
with “but we could be wrong about
this.” A mathematical science of statis-
tics is possible because, although repeat-
ing an experiment gives different results,
some types of results are more common
than others; their relative frequencies are
reasonably stable. We can thus model
the data-generating mechanism through
probability distributions and stochastic
processes—random series with some in-
determinacy about how the events might
evolve over time, although some paths
may be more likely than others. When
and why we can use stochastic models
are very deep questions, but ones for
another time. But if we can use them in
a problem, quantities such as these are
represented as “parameters” of the sto-
chastic models. In other words, they are
functions of the underlying probability
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The Bootstrap

Cosma Shalizi

Statisticians can reuse
their data to quantify
the uncertainty of
complex models

distribution. Parameters can be single
numbers, such as the total rat popula-
tion; vectors; or even whole curves, such
as the expected time-course of tempera-
ture over the year. Statistical inference
comes down to estimating those param-
eters, or testing hypotheses about them.

These estimates and other inferences
are functions of the data values, which
means that they inherit variability from
the underlying stochastic process. If we
“reran the tape” (as Stephen Jay Gould
used to say) of an event that happened,
we would get different data with a cer-
tain characteristic distribution, and ap-
plying a fixed procedure would yield
different inferences, again with a certain
distribution. Statisticians want to use this
distribution to quantify the uncertainty
of the inferences. For instance, by how
much would our estimate of a parameter
vary, typically, from one replication of the
experiment to another—say, to be precise,
what is the root-mean-square (the square
root of the mean average of the squares)
deviation of the estimate from its aver-
age value, or the standard error? Or we
could ask, “What are all the parameter
values that could have produced this data
with at least some specified probability?”
In other words, what are all the param-
eter values under which our data are not
low-probability outliers? This gives us
the confidence region for the parameter—
rather than a point estimate, a promise that
either the true parameter point lies in that
region, or something very unlikely under
any circumstances happened—or that
our stochastic model is wrong.

To get standard errors or confidence
intervals, we need to know the distri-
bution of our estimates around the true
parameters. These sampling distributions
follow from the distribution of the data,
because our estimates are functions of the
data. Mathematically the problem is well
defined, but actually computing anything
is another story. Estimates are typically
complicated functions of the data, and
mathematically convenient distributions
all may be poor approximations of the
data source. Saying anything in closed
form about the distribution of estimates
can be simply hopeless. The two classi-
cal responses of statisticians have been
to focus on tractable special cases, and to
appeal to asymptotic analysis, a method
that approximates the limits of functions.

Origin Myths

If you've taken an elementary statistics
course, you were probably drilled in the
special cases. From one end of the pos-
sible set of solutions, we can limit the
kinds of estimator we use to those with
a simple mathematical form—say, mean
averages and other linear functions of the
data. From the other, we can assume that
the probability distributions featured in
the stochastic model take one of a few
forms for which exact calculation is pos-
sible, either analytically or via tables of
special functions. Most such distribu-
tions have origin myths: The Gaussian
bell curve arises from averaging many
independent variables of equal size
(say, the many genes that contribute to
height in humans); the Poisson distri-
bution comes from counting how many
of a large number of independent and
individually improbable events have oc-
curred (say, radium nuclei decaying in a
given second), and so on. Squeezed from
both ends, the sampling distribution of
estimators and other functions of the
data becomes exactly calculable in terms
of the aforementioned special functions.

That these origin myths invoke vari-
ous limits is no accident. The great re-
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Figure 1. A series of log returns from the Standard
illustrate a classical approach to probability. A financial model that assumes the series are sequences of
Gaussian random variables yields the distribution function shown at center. A theoretical sampling distribution that models

percent of daily returns (denoted as o) shows a value of —0.0326 + 0.00104 (rig/t), but we need a way to determine the uncertainty of this estimate.

sults of probability theory—the laws of
large numbers, the ergodic theorem, the
central limit theorem and so on—de-
scribe limits in which all stochastic pro-
cesses in broad classes of models display
the same asymptotic behavior. The cen-
tral limit theorem (CLT), for instance,
says that if we average more and more
independent random quantities with a
common distribution, and if that com-
mon distribution is not too pathological,
then the distribution of their means ap-
proaches a Gaussian. (The non-Gauss-
ian parts of the distribution wash away
under averaging, but the average of two
Gaussians is another Gaussian.) Typi-
cally, as in the CLT, the limits involve
taking more and more data from the
source, so statisticians use the theorems
to find the asymptotic, large-sample dis-
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tributions of their estimates. We have
been especially devoted to rewriting our
estimates as averages of independent
quantities, so that we can use the CLT to
get Gaussian asymptotics. Refinements
to such results would consider, say, the
rate at which the error of the asymptotic
Gaussian approximation shrinks as the
sample sizes grow.

To illustrate the classical approach
and the modern alternatives, I'll intro-
duce some data: The daily closing prices
of the Standard and Poor’s 500 stock
index from October 1, 1999, to October
20, 2009. (I use these data because they
happen to be publicly available and fa-
miliar to many readers, not to impart
any kind of financial advice.) Profes-
sional investors care more about chang-
es in prices than their level, specifically
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and Poor’s 500 stock index from October 1, 1999, to October 20, 2009 (left), can be used to

independent, identically distributed
the smallest 1

the log returns, the log of the price today
divided by the price yesterday. For this
time period of 2,529 trading days, there
are 2,528 such values (see Figure 1). The
“efficient market hypothesis” from fi-
nancial theory says the returns can’t be
predicted from any public information,
including their own past values. In fact,
many financial models assume such
series are sequences of independent,
identically distributed (IID) Gaussian
random variables. Fitting such a model
yields the distribution function in the
center graph of Figure 1.

An investor might want to know,
for instance, how bad the returns
could be. The lowest conceivable log
return is negative infinity (with all the
stocks in the index losing all value),
but most investors worry less about an
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Figure 2. A schematic for model-based bootstrapping (left) shows thats
like the original data, yielding a new parameter estimate. Alternately,
simulated by resampling from the original data (allowing repeate
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imulated values are generated from the fitted model, and then they are treated
in nonparametric bootstrapping, a schematic (right) shows that new data are
d values), then parameters are calculated directly from the empirical distribution.

2010 May-June 187



T

250
40 -
200
30 :
z 2150 ;
7} @ !
c c {
[0} [} "
Q o5 e :
100 :
10 .
’ 50 -| .
04 TTTT ﬂ_l‘l]lll-\llwl” T 7 0 ;

-0.05 0.00

r

-0.10

T T T T T
0.05 0.10 -0.055 -0.050 -0.045 -0.040 -0.085 -0.030

*

q

Figure 3. An empirical distribution (left, in red, smoothed for visual clarity) of the log returns from a stock-market index is more peaked and has sub-
stantially more large-magnitude returns than a Gaussian fit (blue). The black marks on the horizontal axis show all the observed values. The distribu-
tion of gy based on 100,000 nonparametric replications is very non-Gaussian (right, in red). The empirical estimate is marked by the blue dashed line.

apocalyptic end of American capital-
ism than about large-but-still-typical
losses—say, how bad are the smallest
1 percent of daily returns? Call this
number g ; if we know it, we know
that we will do better about 99 percent
of the time, and we can see whether
we can handle occasional losses of that
magnitude. (There are about 250 trad-
ing days in a year, so we should expect
two or three days at least that bad in a
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year.) From the fitted distribution, we
can calculate that gg0=-0.0326, or,
undoing the logarithm, a 3.21 percent
loss. How uncertain is this point esti-
mate? The Gaussian assumption lets
us calculate the asymptotic sampling
distribution of go 1, which turns out to
be another Gaussian (see the right graph
in Figure 1), implying a standard error
of +0.00104. The 95 percent confidence
interval is (-<0.0347, -0.0306): Either the
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today's return

real gy is in that range, or our data set
is one big fluke (at 1-in-20 odds), or the
[ID-Gaussian model is wrong,.

Fitting Models

From its origins in the 19th century
through about the 1960s, statistics was
split between developing general ideas
about how to draw and evaluate sta-
tistical inferences, and working out the
properties of inferential procedures in
tractable special cases (like the one we
just went through) or under asymptot-
ic approximations. This yoked a very
broad and abstract theory of inference
to very narrow and concrete practical
formulas, an uneasy combination often
preserved in basic statistics classes.

The arrival of (comparatively) cheap
and fast computers made it feasible for
scientists and statisticians to record lots
of data and to fit models to them. Some-
times the models were conventional ones,
including the special-case assumptions,
which often enough turned out to be
detectably, and consequentially, wrong.
At other times, scientists wanted more
complicated or flexible models, some of

Figure 4. A scatter plot of black circles shows
log returns from a stock-market index on suc-
cessive days. The best-fit line (blue) is a linear
function that minimizes the mean-squared
prediction error. Its negative slope indicates
that days with below-average returns tend
to be followed by days with above-average
returns, and vice versa. The red line shows an
optimization procedure, called spline smooth-
ing, that will become more or less curved de-
pending on looser or tighter constraints.



which had been proposed long before but
now moved from being theoretical curi-
osities to stuff that could run overnight.
In principle, asymptotics might handle
either kind of problem, but convergence
to the limit could be unacceptably slow,
especially for more complex models.

By the 1970s statistics faced the prob-
lem of quantifying the uncertainty of in-
ferences without using either implausi-
bly helpful assumptions or asymptotics;
all of the solutions turned out to demand
even more computation. Perhaps the most
successful was a proposal by Stanford
University statistician Bradley Efron, in
a now-famous 1977 paper, to combine
estimation with simulation. Over the last
three decades, Efron’s “bootstrap” has
spread into all areas of statistics, sprout-
ing endless elaborations; here I'll stick to
its most basic forms.

Remember that the key to dealing with
uncertainty in parameters is the sampling
distribution of estimators. Knowing what
distribution we’d get for our estimates
on repeating the experiment would give
us quantities, such as standard errors.
Efron’s insight was that we can simulate
replication. After all, we have already fit-
ted a model to the data, which is a guess
at the mechanism that generated the
data. Running that mechanism generates
simulated data that, by hypothesis, have
nearly the same distribution as the real
data. Feeding the simulated data through
our estimator gives us one draw from
the sampling distribution; repeating this
many times yields the sampling distri-
bution as a whole. Because the method
gives itself its own uncertainty, Efron
called this “bootstrapping”; unlike Bar-
on von Miinchhausen’s plan for getting
himself out of a swamp by pulling him-
self out by his bootstraps, it works.

Let’s see how this works with the
stock-index returns. Figure 2 shows
the overall process: Fit a model to data,
use the model to calculate the param-
eter, then get the sampling distribution
by generating new, synthetic data from
the model and repeating the estima-
tion on the simulation output. The first
time I recalculate gy from a simula-
tion, I get -0.0323. Replicated 100,000
times, I get a standard error of 0.00104,
and a 95 percent confidence interval of
(=0.0347, -0.0306), matching the theo-
retical calculations to three significant
digits. This close agreement shows that
I simulated properly! But the point of
the bootstrap is that it doesn’t rely on
the Gaussian assumption, just on our
ability to simulate.
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Figure 5. The same spline fit from the previous figure (black line) is combined with 800 splines
fit to bootstrapped resamples of the data (blue curves) and the resulting 95 percent confidence

limits for the true regression curve (red lines).

Bootstrapping
The bootstrap approximates the sam-
pling distribution, with three sources of
approximation error. First there’s sirmu-
lation error, using finitely many replica-
tions to stand for the full sampling dis-
tribution. Clever simulation design can
shrink this, but brute force—just using
enough replications—can also make it
arbitrarily small. Second, there’s statisti-
cal error: The sampling distribution of
the bootstrap reestimates under our fit-
ted model is not exactly the same as
the sampling distribution of estimates
under the true data-generating process.
The sampling distribution changes with
the parameters, and our initial fit is not
completely accurate. But it often turns
out that distribution of estimates around
the truth is more nearly invariant than
the distribution of estimates themselves,
so subtracting the initial estimate from
the bootstrapped values helps reduce
the statistical error; there are many sub-
tler tricks to the same end. The final
source of error in bootstrapping is speci-

fication error: The data source doesn’t

exactly follow our model at all. Simulat-
ing the model then never quite matches
the actual sampling distribution.

Here Efron had a second brilliant
idea, which is to address specification
error by replacing simulation from the

model with resampling from the data.
After all, our initial collection of data
gives us a lot of information about the
relative probabilities of different values,
and in certain senses this “empirical dis-
tribution” is actually the least prejudiced
estimate possible of the underlying dis-
tribution—anything else imposes biases
or preconceptions, which are possibly
accurate but also potentially misleading.
We could estimate ¢y directly from the
empirical distribution, without the me-
diation of the Gaussian model. Efron’s
“nonparametric bootstrap” treats the
original data set as a complete popula-
tion and draws a new, simulated sample
from it, picking each observation with
equal probability (allowing repeated val-
ues) and then re-running the estimation
(as shown in Figure 2).

This new method matters here be-
cause the Gaussian model is inaccurate;
the true distribution is more sharply
peaked around zero and has substan-
tially more large-magnitude returns, in
both directions, than the Gaussian (see
the left graph in Figure 3). For the em-
pirical distribution, g01=-0.0392. This
may seem close to our previous point
estimate of —0.0326, but it’s well beyond
the confidence interval, and under the
Gaussian model we should see values
that negative only 0.25 percent of the
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