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Preface

This book is concerned with the mathematical theory of non-linear elasticity,
the application of this theory to the solution of boundary-value problems
(including discussion of bifurcation and stability) and the analysis of the
mechanical properties of solid materials capable of large elastic deformations.
The setting is purely isothermal and no reference is made to thermodynamics.
For the most part attention is restricted to the quasi-static theory, but some
brief relevant discussion of time-dependent problems is included.

Apart from much basic material the book includes many previously
unpublished results and also provides new approaches to some problems
whose solutions are known. In part the book can be regarded as a research
monographbut, at the same time, parts of it should also be suitable as a
postgraduate text. Problems designed to develop further the text material are
given throughout and some of these contain statements of new results.

Because so much of the theory depends on the use of tensors, Chapter 1
concentrates on the development of much of the tensor algebra and analysis
which is used in subsequent chapters. However, there are parts of the book (in
particular, Sections 4.4 and 7.2) which do not rely on a knowledge of tensors
and can be read accordingly. Chapter 2 provides a detailed development of the
basic kinematics of deformation and motion. Chapter 3 deals with the balance
laws for a general continuum and the concept of stress. Prominence is given to
the nominal stress tensor and the notion of conjugate stress and strain tensors
is examined in detail.

In Chapter 4 the properties of the constitutive laws of both Cauchy- and
Green-elastic materials are studied and, in particular, the implications of
objectivity and material symmetry are assessed. Considerable attention is
devoted to isotropic constitutive laws for both (internally) constrained and
unconstrained materials. The basic boundary-value problems of non-linear
elasticity are formulated in Chapter 5 and the governing equations are solved
for a selection of problems in respect of unconstrained and incompressible
isotropic materials. A section dealing with variational aspects of boundary-
value problems is included along with a short discussion of conservation laws.
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Chapter 6, the longest chapter, is concerned with incremental deformations
superposed on an underlying finite deformation. The resulting (linearized)
boundary-value problem is formulated and its structure discussed in relation
to the analysis of uniqueness, stability and bifurcation. The role of the strong
ellipticity inequality is examined. Constitutive inequalities are discussed and
the implications of their failure in relation to bifurcation (or branching) is
assessed from the local (i.e. incremental) viewpoint. Global aspects of non-
uniqueness are also considered. The incremental theory is then applied to
some representative problems whose bifurcation behaviour is studied in detail.

In the final chapter, Chapter 7, the theory of elasticity is applied to certain
deformations and geometries associated with simple experimental tests, in
particular the pure homogeneous biaxial deformation of a rectangular sheet.
The relevant theory is provided in a concise form as a background for
comparison with experimental results, isotropic materials being considered
for simplicity of illustration. This is then used to assess the elastic response of
certain rubberlike materials. The incremental theory governing the change in
deformation due to a small change in material properties is developed and
applied to the case of a slightly compressible material and this in turn is
illustrated by means of rubberlike materials.

The book concentrates on ‘exact’ theories in the sense that no discussion of
‘special’ theories, such as shell, rod or membrane theories, or of numerical
methods is included. (Excellent separate accounts of these topics are available
elsewhere.) Within this framework a broad spectrum of topics has been
covered and a balanced overview attempted (although this is, not surprisingly,
influenced by the areas of the subject on which the writer has been actively
engaged). Attention is confined to twice-continuously differentiable de-
formations on the whole, with discontinuities being touched on only briefly, in
Chapter 6, in relation to failure of ellipticity.

References to standard works for background reading are given through-
out the text but historical attributions and detailed lists of references to papers
are not provided. Only where further development of the textual material
might be required are references to the more recent papers cited, but the list of
references is not intended to be exhaustive. References are indicated by the
author’s name followed by the year of publication in the text and gathered
together at the end of each chapter.
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CHAPTER 1

Tensor Theory

The use of vector and tensor analysis is of fundamental importance in the
development of the theory which describes the deformation and motion of
continuous media. In non-linear elasticity theory, in particular, little progress
can be made or insight gained without the use of tensor formulations. This
first chapter is therefore devoted to an account of the vector and tensor
algebra and analysis which underlies the requirements of subsequent chapters.
Some theorems of tensor algebra, however, are not dealt with here but
postponed until the later chapters in which they are needed.

It is assumed that the reader is familiar with elementary vector and matrix
algebra, including determinants, with the concept of a vector space, including
linear independence and the notion of a basis, and with linear mappings.
Also some familiarity with the index (or suffix) notation and the summation
convention is assumed. Nevertheless, certain basic ideas are summarized in
the early part of this chapter, primarily to establish notations but also for
convenience of reference.

1.1 EUCLIDEAN VECTOR SPACE

The set of real numbers is denoted by R. A scalar is a member of R.

A (real) vector space V is a set of elements (called vectors’) such that (a)
u+velV, u+v=v+u, u+(v+w=@w+v)+w for all uyv,weV, (b) V
contains the zero vector 0 such that u + 0 =u for all ue V and for every ue Vv
there is an inverse element, denoted —u, such that u+(—u)=0, (c) cueV,
lu=u, o(fu)=(a2fu, (x+ pflu=ocu+ fu, 2(u+v)=cu+av for all a, feR,
u,ve V, where 1 denotes unity.

A Euclidean vector space E is a real vector space such that, for any pair
of vectors u,veE, there is defined a scalar, denoted u-v, with the properties

—— (1.1.1)

uu=>0 (1.1.2)

*In this chapter vectors are denoted by bold-face, lower-case letters, e.g. t,u,v,....



