Advanced Thermoforming Methods, Machines and Materials, Applications and Automation Sven Engelmann # Advanced Thermoforming Methods, Machines and Materials, Applications and Automation ## Sven Engelmann Director of Polymer Technology Gerhard Schubert GmbH Crailsheim, Germany Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. #### Library of Congress Cataloging-in-Publication Data Engelmann, Sven. Advanced thermoforming: methods, machines and materials, applications and automation by / Sven Engelmann. p. cm. Includes index. ISBN 978-0-470-49920-7 (cloth) 1. Thermoforming. I. Title. TP1151.T48E64 2012 668.4'23-dc23 2011037218 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 ## Advanced Thermoforming ## Wiley Series on Polymer Engineering and Technology Richard F. Grossman and Domasius Nwabunma, Series Editors Polyolefin Blends Edited by Domasius Nwabunma and Thein Kyu Polyolefin Composites Edited by Domasius Nwabunma and Thein Kyu Handbook of Vinyl Formulating, Second Edition Edited by Richard F. Grossman Total Quality Process Control for Injection Molding, Second Edition M. Joseph Gordon, Jr. Microcellular Injection Molding Jingyi Xu Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications Edited by Rafael Auras, Loong-Tak Lim, Susan E.M. Selke, and Hideto Tsuji Hyperbranched Polymers: Synthesis, Properties, and Applications Edited by Deyue Yan, Chao Gao, and Holger Frey Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation Sven Engelmann For my lovely wife Ulrike and my wonderful children Leo, Peter, and Luzy. ## Preface This book focuses on practical applications. It deals with technical parts, but also with packaging (the topics range from bathtubs to syringe blisters). Beside the applications, the respective machine and tooling technologies, automation, and, of course, semifinished products and materials are described. Also a large part of the book is dedicated describing innovations in materials, so that the book can serve as a useful reference work on raw materials and semifinished products. Also discussed are multilayer structures, which are finding increasing use for fuel tanks as well as cheese packaging. Reliable applications of machine, tooling, and materials are demonstrated. The basic principles of extrusion, which are important for thermoforming are named for clarity's sake without going into depth. The basic principles of thermoforming and thermoplastics are covered briefly, as there are already several standard works dealing with these subjects. The present book is intended to complement, not replace the existing literature on thermoforming, and to open up new perspectives on the applications considered within. The author is grateful to all those writers who have advanced, described, and explained thermoforming and made it popular. The aim of the book is to communicate points worth knowing about thermoforming and to arouse interest. The author hopes this book will show the reader the diversity and sophistication of the thermoforming industry and ways of implementing cost-effective production. SVEN ENGELMANN ## Contents | Preface | xi | |---------------------------------------------------------------------------|-----| | 1. Introduction | 1 | | 2. Basics of Thermoforming and Thermoplastics | 5 | | 3. Production of Semifinished Products, Extrusion, and Coextrusion | 12 | | 4. Introduction to Technical Parts | 28 | | 5. Antenna Radome Manufacturing | 29 | | 6. Fuel Tank Production on Sheet Machines | 33 | | 7. Automotive Body and Commercial Vehicle Applications | 41 | | 8. Production of Refrigerator Liners | 48 | | 9. Paint Replacement in Automotive Applications | 61 | | 10. Motor Air Intake Made from PA 6 GF 15 | 70 | | 11. Sanitary Equipment (Sheet Machine) | 72 | | 12. Thermoforming and Milling of Large-Scale Formed Parts (Sheet Machine) | 76 | | 13. Changeover of Sheet Machines | 84 | | 14. Chromed Parts | 92 | | 15. Applications in Aircraft and Mass Transportation | 94 | | 16. High-Quality and Fully Transparent Products (Sheet Machines) | 103 | | 17. Deco Molding and Multi-deco Molding | 106 | | | vii | | | ~ | W | |------|------|-------| | VIII | (on | tents | | | | | | 18. | Automotive Body Parts Made of PA + ABS | 119 | |-----|--------------------------------------------------------------|-----| | 19. | Softfeel Made from ABS/TPU Material | 121 | | 20. | Introduction to Packaging | 124 | | 21. | Optimizing a Thermoforming Process for Packaging | 125 | | 22. | Analysis of Thermoforming Films | 137 | | 23. | Advanced Analysis of Thermoforming Films | 144 | | 24. | Analysis of Thermoformed Products | 151 | | 25. | Analysis of Completely Formed, Filled, and Sealed Containers | 160 | | 26. | Automated Packaging | 167 | | 27. | Production of Flowerpots | 179 | | 28. | Steel Rule Die Punching | 197 | | 29. | Production of Meat Trays | 200 | | 30. | Multilayer Films for Thermoforming Applications | 208 | | 31. | PET in Thermoforming Applications | 211 | | 32. | Thermoformed Packaging Made of PLA | 227 | | 33. | Peel and Reseal | 232 | | 34. | Foam Packaging with PP and PS | 250 | | 35. | Blister Packaging of Syringes | 257 | | 36. | The Production of Drinking Cups | 264 | | 37. | Ultrasonic Sealing and Cutting in Thermoforming | 287 | | 38. | Understanding the Brittle Behavior of Polystyrene Cups | 293 | | 39. | Preprinted Film for Lid Thermoforming | 308 | | Contr | ents ix | |--------------------|---------| | 40. Flexible Films | 311 | | 41. Simulation | 316 | | 42. Recycling | 324 | | Glossary | 328 | | Index | 329 | ## Chapter 1 ## Introduction Reference books can be difficult to read and understand. Often technical connections and contexts are described by using a lot of mathematics—and often right from the beginning—so that a large part of the target group is overcharged or quickly loses interest. However, reading books on technology and engineering can be fun. Books dealing with technology should impart knowledge at an adequate pace. We live in a world that is dependent on a multitude of technologies. Yet it can be observed that fewer and fewer young people are interested in technical professions. What are the reasons for this development? It is true that the rush of today's technology can initially have a discouraging effect. A lot of technology has become so complex and abstract that it is no longer possible to understand the connections through mere reflection or observation. As the modifications to technologies and processes come even faster, is it possible to keep up with these developments? The answer is yes! There will always be technological development because economic issues and ecology are driving forces. Technological advancements, however, depend on the degree to which enthusiasm for technology can be aroused in persons with a certain talent and a disposition toward engineering. To some extent this book is based on a series of lectures called the "Basics of Thermoforming." Among these lectures the discussions range over many topics, even to the "mere" production of a yogurt cup. There are many people who are not directly involved in the development of technologies but who exert nonetheless an influence on technological developments. These decision makers, however, do depend on basic knowledge of the technological linkages and contexts. This book is intended as a reference book for the relatively small industrial sector of thermoforming applications. This book focuses on thermoformed products and applications. All of us once had the experience of asking ourselves, when contemplating a formed part, how was this part produced? This book is subdivided into the description of technical formed parts and of packaging. Some parts may not even look like thermoformed parts to the casual observer. This book will discuss the enormous possibilities of thermoforming at a level that Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation, First Edition. Sven Engelmann. ^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc. presents an overview of the diversity of this plastics-processing method for nonprofessionals. At the same time the book includes useful detailed knowledge for the professional practitioner. This book takes the thermoformed part and traces it back to the process chain. Machine and tooling technologies and the possible automation steps are explained in full detail, as are the materials used. For the description of the materials, the effects of the extrusion process are also considered and the characteristics of the raw materials are explained. Where the process chains are similar for some of the described applications, only the distinctive features are identified. The book also describes methods for the optimization of the thermoforming process. If you look closely at your surroundings, you will find countless objects in your daily use that were produced using the thermoforming process. Bath and shower tubs are thermoformed parts and among the first thermoforming products you will see on entering your bathroom in the morning. If you decide to use a new toothbrush, you have to tear open its packaging made of thermoformed material. Opening your fridge, you will see thermoformed yogurt cups, and even your fridge itself has a thermoformed interior housing (liner). Even though thermoforming is being more and more used for automobile interiors and exteriors, the automotive industry has not yet played a big role in plastics engineering. But the pressure for more efficiency, cost cutting, and longer durability of some products has managers changing their outlook on thermoforming. Thermoforming has a vast area of applications. From bathtub to toothbrush blister, from a cookie tray to a car roof, it does not matter which product you look at; most often it is a high tech application. This book should help give an overview and insight in this advanced technology. There are different processes you can use depending on the application you need. The machine technology is getting more refined, enabling users to get with higher productivity, better quality, less material cost, and so forth. With the use of new machine drive concepts and digital machine control systems, modern machines need less energy. The mold technology has dramatically developed in the past few years. Flexible molds require less change over times. This book shows the possibilities available with the new standard technology. The literature so far has covered little regarding the handling of the semifinished products and formed parts, as well as further handling in inline processes. Automation is well on its way and will not stop for technical parts or in the packaging industry. This book will show the possibilities of automated processes. The forming, filling, and sealing processes will be reviewed in particular, as these processes are not exhaustively treated in other works of literature. Many innovations, such as thermoformed automobile body parts or fully automated packaging assembly lines, include end packaging. These innovations need to be discussed in a written work and so are addressed in this book. A discussion of thermoforming should also include the various developments from the resin producers and semifinished product producers. A large part of the book will cover such materials, so that the book will serve as a useful reference. The discussions of multilayer laminates have applications ranging from fuel tanks to the packaging of cheese. The simulation of formed parts will be covered in another chapter in this book. The thermoforming simulation is even less discussed than, for example, simulation for injection molding. This and many other procedures of the entire field of thermoforming are described in this book. The book therefore takes a comprehensive view of thermoforming and shares the expert knowledge of experienced thermoformers. With regard to the available literature, the application of thermoforming differs significantly from that of injection molding, and it is all the more important to assemble the available knowledge on thermoforming, as it is in this book. While much information contained in this book can be researched, the thermoforming applications assembled here will help the user to better understand the end results. Of course, companies that specialize in thermoforming processes are dependent on their workers' know-how. In many circumstances knowledge of the tricks of thermoforming can lead to significant competitive disadvantages. Indeed I have benefited from people who supported the ideal of this book by divulging their knowledge. Experienced thermoformers, for example, Dr. Manfred Reichert, Horst R. Dänzer, and above all Rudi Salmang, have greatly contributed to the writing of this book. For several decades they have collected experiences in the field of thermoforming and the related processing steps. They were all willing to share their knowledge. For these persons it is certainly true that tradition does not mean the keeping of the ashes, but the passing on of the fire. The compilation of the book was also supported by a number of companies that, despite the hard times during the economic crisis in 2009 to 2010, made a point of The compilation of the book was also supported by a number of companies that, despite the hard times during the economic crisis in 2009 to 2010, made a point of describing interesting applications and providing information. First of all Kiefel GmbH, Freilassing, Germany, must be mentioned. Here the support was chiefly provided by Erwin Wabnig and Reinhold Plot, who in the European Thermoforming Division are deeply involved with the Society of Plastic Engineers. Both men significantly contributed to the development of this book by drawing attention to interesting research at their company and providing relevant information. Likewise Geiss AG, Seßlach, Germany, contributed to the making of this book by providing information. Manfred Geiss, in particular, must be mentioned, who, as is well known, always presents up-to-date technologies in his speeches. Thanks must additionally be extended to the tooling manufacturer Bosch Sprang BV, Netherlands, especially to Berry Smeulders, who gave information about interesting examples arising from engineering practices. A large part of the book deals with the description of raw materials. It is very gratifying that so many companies and persons who were interviewed were so willing to share their knowledge; they significantly raised my understanding of thermoforming materials. My particular interest in writing this book is to sensitize the user to the connection between knowledge of the materials and successful thermoforming production. So far this is an area where not all phenomena have been recognized. The more knowledge we have about materials and their processing characteristics, the more economic efficiency we can impart to production. #### 4 Chapter 1 Introduction Special thanks goes to Paul de Mink of Borealis, Austria, who shared his knowledge about extrusion and thermoforming of PP. Rudi Salmang also contributed his profound knowledge on extrusion and thermoforming of PS. Furthermore, he shared his vast experience in helping to proofread the final typescript of this book. Additional thanks go to Willy Onclin, PhD, of Eastman Chemical BV, the Netherlands, and Frank Kleinert of Klöchner Pentaplast GmbH & Co. KG, Germany, for their counsel regarding the development of the articles dealing with PET material. I want to thank Senoplast Klepsch & Co. GmbH, Piesendorf, Austria, especially Claudia Pichler, Erich Bernsteiner, Lukas Schwaighöfer, Thomas Höfels, and Walter Körmer, for their help on the chapters dealing with the processing of semifinished sheet products. For their help regarding the topic of semifinished film products in the packaging sector, I want to express my thanks to Claudia Müller and Peter Brass of Südpack Verpackungen GmbH & Co. KG, Ochsenhausen, Germany. Thanks also go to Daniel Ganz of Sukano Products Ltd., Switzerland, and Holger Müller of Omya International AG, Switzerland, for their contribution regarding filling material and additives. For his help with the chapter dealing with simulation, I would like to thank Karel Kouba, whose work has led to advancements in simulation processes. The stimulus for the development of this book also came from Hannes Jacob, Klaus Wlasak, and Marcus Schuck of Jacob Plastics GmbH. Special thanks go to Thorsten Eymael and Nina Schick of SE Kunststoffverarbeitung GmbH & Co. KG for their help as well. To Gerlind zum Hingst, Sabine Jettke, Bärbel Beyhl, and Karin Scherer, I want to express my gratitude for their support with the organization of this book and help with the translation. Also many thanks to Hartmut Thimig and Tobias Vogt. All other persons who contributed to the development of this book are referred to in the relevant chapters. Last, but not least, I would particularly like to thank Gerhard Schubert, one of the most innovative machine designers, for his support. In this book a semifinished product that can be wound is referred to as "film." Any semifinished product that, due to its material thickness, cannot be wound, is referred to as "sheet." While this book is an attempt to explain the world of thermoforming, it lays no claim to completeness or universal validity and assumes no liability. Several persons and companies which deal with thermoforming are deliberately cited. The experiences of the author show that this provides support for someone who is seeking advice. Naturally, the number of applications described in the book is not allencompassing, because this book can only provide an overview about the various possibilities. Also, in this regards, only one reference per topic is mentioned in order not to create a competing impression. # Basics of Thermoforming and Thermoplastics Several very good books on the basics of thermoforming and thermoplastics have already been published. Some institutes and machine manufacturers are offering training courses for the acquisition of basic knowledge about thermoforming as well as of basic knowledge about thermoplastics. For this reason the present book does not describe in detail the basics of thermoforming. The plastics discussed in this book are illustrated by means of an example of use. Thermoforming normally consists of heating a thermoplastic semifinished product until the forming temperature is reached, and subsequently the desired form is obtained by means of pressure difference and mechanic stretching. Mostly, this is carried out with only one mold half. Thus it can already be discerned that, compared with other plastic processing methods, thermoforming presents economic advantages relating to the forming tool. Thermoforming is a forming method that, by means of several process steps, facilitates the production of an inherently stable plastic part. Basically the raw material is transformed by heating into a viscous-flexible phase and a relatively low load. The formed part cools in the tooling and is subsequently demolded. Due to the cooling down the orientations of the molecule chains keep their stretched positions. Re-heating results in a recovery to the original sheet state. The process steps generally take the following order: - Heating of the semifinished product. The semifinished plastic product is heated until the forming temperature is attained. This can be effected with heating elements, contact heating units, or convective heat. These heat sources can also be combined. - Forming. This is mostly effected by means of a thermoforming tool. - Cooling. Cooling is effected under a mold constraint until a temperature is attained for which the formed part is inherently stable. - Demolding. Demolding of the inherently stable formed part. Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation, First Edition. Sven Engelmann. ^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc. Over many decades different thermoforming methods have been developed based on the above-mentioned principle. Semifinished plastic products and thermoforming machines are, of course, subject to certain standards. The semifinished products can be processed either as film or as sheet, and they can be manufactured in an upstream process step in a machine placed directly in front of the thermoforming machine. Generally, films are commercialized as wound reels. If the semifinished product cannot be wound on reels due to its thickness, it is cut and handled as sheets. Most plastics that have a thickness of more than 2.5 mm are processed as sheets. PC, PMMA, PA, POM, and ABS as well as fiber-reinforced composites and self-reinforced materials are semifinished products for technical applications. For the automobile industry, often thermoplastic elastomers and thermoplastic polyole-fins are used. PET, PS, PP, PVC, and PE are semifinished products for packaging applications. They are provided with corresponding additives for the modification of their characteristics. Modifying agents are necessary to obtain food compatibility and resistance, such as to improve their permeation characteristics. For the manufacturing of technical parts as well as in the packaging sector, foamed semifinished products are increasingly utilized as they reduce weight and offer insulation advantages. Many semifinished products consist of several different layers in order to provide the final product with the best possible characteristics. In the food-packaging sector the following characteristics are especially demanded: - · High oxygen, gas, water vapor, and aroma barrier - · High product neutrality - · Light protection and UV barrier - · Excellent thermoforming and sealing characteristics - · Good mechanic properties - · Good printability - · Peelability However, multilayered semifinished products are also available for technical products, for example, in lacquer coats for car bodies. Recycled material may even be incorporated into the intermediate layer of semifinished product. #### 2.1 THERMOFORMING METHODS Because thermoforming is normally effected in one mold half, only a one-sided definition is possible. The advantage is that only one mold half must be designed, dimensioned, and manufactured. The forming technologies are differentiated into the following subgroups: - · Positive - Negative - · Compressed air - Vacuum - · Plug assisted - Lamination To some extent these methods can also be combined. ### 2.2 POSITIVE FORMING In the positive forming method the heated semifinished product is drawn over the forming mold. The definition is on the inside of the finished part. During the forming process the inside has contact with the forming mold and takes over its shape. In a first step, the thermoplastic semifinished product is brought to its forming temperature. In order to receive a uniform wall thickness distribution, the material is pre-streched by means of pre-blowing. After this, the mold closes, and vacuum is applied to bring the material to its final shape. Demolding takes place after the plastic has cooled. The positive forming method is often used in sheet machine applications. #### 2.3 NEGATIVE FORMING A common application of negative forming is in the production of cups. After the heated film has been positioned in the forming station, the mold closes. As the plug assist pulls down, the trapped air in the cavity is released by means of venting holes. Then the forming air is applied and the part receives its final shape. Demolding takes place after the plastic has cooled down. ## 2.4 ADVANTAGES AND DISADVANTAGES OF THERMOFORMING Thermoforming is mostly in concurrence with injection molding. The advantages and disadvantages listed below principally refer to a comparison with injection molding. The manufacturing of technical articles by forming has the following advantages: - · Heavy parts can be produced (up to 125 kg) - Large parts can be manufactured (up to 4 m²) - Flexible wall thickness (0.05-16 mm) - Cost-effectiveness for small batches (tooling costs) - · Low costs for modifications and for color change - Homogeneous multilayer applications are possible The manufacturing of packaging parts by forming has the following advantages: