Data Structures,
Algorithms,
and Applications in C++
TR
ﬁi i ‘5 .

— C++ii G ik _

(EHR)

(3€) Sartaj Sahni #
i 8 BLGEY R

Al T Ak i ORR 4

c -
China Machine Press I-lil Education



TS A5

BIEMERIESNAHCH+
Bt

(&R )

L =

£

Data Structures, Algorithms, and
Applications in C++

P 2R K

UM T b KR

China Machine Press

WCB
McGraw-Hill




Sartaj Sahni: Data Structures, Algorithms, and Applications in C++.

Copyright © 1988 by The McGraw-Hill Companies, Inc. All rights
reserved. Jointly published by China Machine Press/McGraw-Hill.This edition
may be sold in the People's Republic of China only. This book cannot be re-
exported wnd 1s not for sale outside the People's Republic of China.

RISBN Q07-1168737

AN 32 ERR F MeGraw-HillAs el SEACHUIE 1k S ikt 7
FERBEEEN R MU T, AL VAT, A3 LT 77 L 22
S X A [ AT AT 5y

WRRLTAT , AR AL T -

AEMRNEIES: BE=: 01-99-0113
BEHEM&BE (CIP) #iE

a2 L S5 H——CriB Sk Sy (%) %8
(Sahni, S) #; -FZEORR. — JbaT: HLB TR, 19993

CHBEHLEE AT )

ISBN 7-111-07017-8

I8 N2 M.OCES - Bishf - Wil - @
Cili & - Y107 - 53¢ IV.TP311.13

P E R A BB AR CIPEURAZ S (1999) 26024205

BB Tl R CJbse i v R 77T k228 HEECR RS 100037)

soiTamiE: A Mot SR

b5t ESEFRREEQMI T ENRI - BB IR SR AT R R AT

20064E2 H 45 1R 555 ENRI

787mm x 1092mm 1/16 - 26.5E1ik

S 49.007¢

PUAS S, QAT 150, BT, fhACH R AT EkiEg



To my mother,
Santosh

my wife,
Neeta

and my children,
Agam, Neha, and Param



PREFACE

The study of data structures and algorithms is fundamental to computer science
and engineering. A mastery of these areas is essential for us to develop com-
puter programs that utilize computer resources in an effective manner. Conse-
quently, all computer science and engineering curriculums include one or more
courses devoted to these subjects. Typically, the first programming course intro-
duces students to basic data structures (such as stacks and queues) and basic
algorithms (such as those for sorting and matrix algebra). The second program-
ming course covers more data structures and algorithms. The next one or two
courses are usually dedicated to the study of data structures and algorithms.

The explosion of courses in the undergraduate computer science and
engineering curriculums has forced many universities and colleges to consoli-
date material into fewer courses. At the University of Florida, for example, we
offer a single one-semester undergraduate data structures and algorithms course.
Students coming into this course have had a one semester course in C++ pro-
gramming and another in discrete mathematics/structures.

Data Structures, Algorithms, and Applications in C++ has been developed
for use in programs that cover this material in a unified course as well as in pro-
grams that spread out the study of data structures and algorithms over two or
more courses. The book is divided into three parts. Part I, which consists of
Chapters 1 and 2, is intended as a review of C++ programming concepts and of
algorithm analysis and measurement methods. Students who are familiar with
programming in C should be able to read Chapter 1 and bridge the gap between

\



VI Preface

C and C++. Although Chapter 1 is not a primer on C++, it covers most of the
C++ constructs with which students might have become rusty. These concepts
include modes of parameter passing, template functions, recursion, dynamic
memory allocation, classes, and throwing and catching exceptions. More
advanced C++ concepts such as inheritence, virtual functions, and abstract
classes are described in the chapters where they are first used. Chapter 2 is a
review of methods to analyze the performance of a program—operation counts,
step counts, asymptotic notation (big oh, omega, theta, and little oh); it also
reviews methods to measure performance experimentally. The applications con-
sidered in Chapter 2 explore fundamental problems typically studied in a begin-
ning programming course—simple sort methods such as bubble, selection, inser-
tion, and rank (or count) sort; simple search methods such as sequential and
binary search; polynomial evaluation using Horner’s rule; and matrix operations
such as matrix addition, transpose, and multiply. Even though the primary pur-
pose of Chapter 2 is to study performance analysis and measurement methods,
this chapter also ensures that all students are familiar with a set of fundamental
algorithms.

Chapters 3 through 12 form the second part of the book. These chapters
provide an in-depth study of data structures. Chapter 3 forms the backbone of
this study by examining various methods of representing data—formula-based,
linked, simulated pointer, and indirect addressing. This chapter develops C++
classes to represent the linear list data structure, using each representation
method. At the end of the chapter, we compare the different representation
schemes with respect to their effectiveness in representing linear lists. The
remaining chapters on data structures use the representation methods of Chapter
3 to arrive at representations for other data structures such as arrays and matrices
(Chapter 4), stacks (Chapter 5), queues (Chapter 6), dictionaries (Chapters 7 and
11), binary trees (Chapter 8), priority queues (Chapter 9), tournament trees
(Chapter 10), and graphs (Chapter 12).

The third part of this book, which comprises Chapters 13 through 17, is a
study of common algorithm-design methods. The methods we study are greedy
(Chapter 13), divide and conquer (Chapter 14), dynamic programming (Chapter
15), backtracking (Chapter 16), and branch and bound (Chapter 17). Two
lower-bound proofs (one for the minmax problem and the other for sorting) are
provided in Section 14.4; approximation algorithms for machine scheduling
(Section 9.5.2), bin packing (Section 10.5), and the 0/1 knapsack problem (Sec-
tion 13.3.2) are also covered. NP-hard problems are introduced, informally, in
Section 9.5.2.

A unique feature of this book is the emphasis on applications. Several
real-world applications illustrate the use of each data structure and algorithm-
design method developed in this book. Typically, the last section of each chapter
is dedicated to applications of the data structure or design method studied earlier
in the chapter. In many cases additional applications are also introduced early in
the chapter. We have drawn applications from various areas—sorting (bubble,



Preface VII

selection, insertion, rank, heap, merge, quick, bin, radix, and topological sort);
matrix algebra (matrix addition, transpose, and multiplication); electronic design
automation (finding the nets in a circuit, wire routing, component stack folding,
switch-box routing, placement of signal boosters, crossing distribution, and
backplane board ordering); compression and coding (LZW compression,
Huffman coding, and variable bit-length codes); computational geometry (con-
vex hull and closest pair of points); simulation (machine-shop simulation); image
processing (component labeling); recreational mathematics (Towers of Hanoi,
tiling a defective chessboard, and rat in a maze); scheduling (LPT schedules);
optimization (bin packing, container loading, 0/1 knapsack, and matrix multipli-
cation chains); statistics (histogramming, finding the minimum and maximum,
and finding the kth smallest); and graph algorithms (spanning trees, components,
shortest paths, max clique, bipartite graph covers, and traveling salesperson).
Our treatment of these applications does not require prior knowledge of the
application areas. The material covered in this book is self-contained and gives
students a flavor for what these application areas entail.

By closely tying the applications to the more basic treatment of data struc-
tures and algorithm-design methods, we hope to give the student a greater appre-
ciation of the subject. Further enrichment can be obtained by working through
the almost 600 exercises in the book and from the associated Web site.

WEB SITE

The URL for the Web site for this book is www.cise.ufl.edu/"sahni/dsac. From
this Web site you can obtain all the programs in the book together with sample
data and generated output. The sample data is not intended to serve as a good
test set for a given program; rather it is just something you can use to run the pro-
gram and compare the output produced with the given output.

All programs in this book have been compiled and run using Borland’s
C++ compiler version 5.01 as well as GNU’s C++ compiler version 2.7.2.1. The
files have been zipped together and placed on the Web site as two separate zip
files—one for Borland C++ and the other for GNU C++. The mapping between
program numbers in the text and file names is available from the readme file,
which is included in the zip file.

The Web site also includes solutions to many of the exercises that appear
in each chapter, sample tests and solutions to these tests, additional applications,
and enhanced discussions of some of the material covered in the text.



VIII Preface

ICONS

We have used several icons throughout the book to highlight various features.
The icon for a section that provides a bird’s-eye view of the chapter contents is

The icon for the treatment of an application is

The icon for a topic on which more material can be found at the Web site is

@

Some of the exercises have been labeled with the symbol #. This denotes
an exercise whose solution requires development beyond what is done in the
chapter. As a result, these exercises are somewhat harder than those without the
symbol.



Preface X

HOW TO USE THIS BOOK

There are several ways in which this book may be used to teach the subject of
data structures and/or algorithms. Instructors should make a decision based on
the background of their students, the amount of emphasis they want to put on
applications, and the number of semesters or quarters devoted to the subject. We
give a few of the possible course outlines below. We recommend that the assign-
ments require students to write and debug several programs beginning with a
collection of short programs and working up to larger programs as the course
progresses. Students should read the text at a pace commensurate with class-
room coverage of topics.

TWO-QUARTER SCHEDULE—QUARTER 1
One week of review. Data structures and algorithms sequence.

Week || Topic Reading
1 Review of C++ and program per- | Chapters 1 and 2.
formance. Assignment 1 given out.
2 Formula-based  and  linked || Sections 3.1-3.4.
representations. Assignment | due.
3 Linked, indirect addressing, and || Sections 3.4-3.7.
simulated pointer. Assignment 2 given out.
4 Bin sort and equivalence classes. | Section 3.8.
Assignment 2 due.
5 Arrays and matrices. Chapter 4.
Examination.
6 Stacks and queues. Chapters 5 and 6.
Assignment 3 given out.
7 Skip lists and hashing. Chapter 7.
Assignment 3 due.
8 Binary and other trees. Sections 8.1-8.9.
Assignment 4 given out.
9 Union/find application. Heaps || Sections 8.10.2,9.1-9.3,
and heap sort. and 9.5.1.
Assignment 4 due.
10 Leftist trees, Huffman codes, and | Sections 9.4 and 9.5
tournament trees. and Chapter 10.




X Preface

TWO-QUARTER SCHEDULE—QUARTER 2

Data structures and algorithms sequence.
Week | Topic Reading
1 Search trees. Do either AVL or || Chapter 11.
red-black trees. Histogramming. || Assignment 1 given out.
2 Graphs Sections 12.1-12.7.
Assignment 1 due.
3 Graphs. Sections 12.8-12.11.
) Assignment 2 given out.
4 The greedy method. Sections 13.1-13.3.5.
Assignment 2 due.
5 The greedy method and the || Sections 13.3.6 and 14.1.
divide-and-conquer method. Assignment 3 given out.
6 Divide-and-conquer applications. || Section 14.2.
Examination.
7 Solving  recurrences, lower | Sections 14.3, 14.4,
bounds, and dynamic program- || and 15.1.
ming. Assignment 3 due.
8 Dynamic programming applica- || Sections 15.2.1and 15.2.2.
tions. Assignment 4 given out.
9 Dynamic programming applica- | Sections 15.2.3-15.2.5.
tions. Assignment 4 due.
10 Backtracking and branch-and- | Chapters 16 and 17.
bound methods.




Preface X

Graphs. Merge sort and quick
sort’

SEMESTER SCHEDULE
Two weeks of review. Data structures course.
Week || Topic Reading
1 Review of C++. Chapter 1.
Assignment 1 given out.
2 Review of program performance. | Chapter 2.
3 Formula-based  and  linked || Sections 3.1-3.4.
representations. Assignment 1 due.
4 Linked, indirect addressing, and | Sections 3.4-3.7.
simulated pointer. Assignment 2 given out.
5 Bin sort and equivalence classes. || Section 3.8.
6 Arrays and matrices. Chapter 4.
Assignment 2 due.
First examination.
7 Stacks. Do one or two applica- | Chapter 5.
tions. Assignment 3 given out.
8 Queues. Do two applications. Chapter 6.
9 Skip lists and hashing. Chapter 7.
4 Assignment 3 due.
10 Binary and other trees. Sections 8.1-8.9.
Assignment 4 given out.
11 Union/find application. Section 8.10.2.
Second examination.
(12 Priority queues, heap sort, and || Chapter 9.
Huffman codes. Assignment 4 due.
13 Tournament trees and bin pack- | Chapter 10.
ing. Assignment S given out.
14 Search trees. Do either AVL or | Chapter 11.
red-black trees. Histogramming.
15 Graphs Sections 12.1-12.7.-
Assignment 5 due.
16 Sections 12.8-12.11,

14.2.2,and 14.2.3.




XIl Preface

SEMESTER SCHEDULE
One week of review. Data structures and algorithms course.
[Week [ Topic Reading
1 Review of program performance. | Chapters 1 and 2.
2 Formula-based and  linked || Sections 3.1-3.4.
representations. Assignment 1 given out.
3 Linked, indirect addressing, and || Sections 3.4-3.8.
simulated pointer.
4 Arrays and matrices. Chapter 4.
Assignment 1 due.
5 Stacks and queues. Do one or || Chapters 5 and 6.
two applications. Assignment 2 given out.
6 Skip lists and hashing. Chapter 7.
First examination.
Assignment 2 due.
7 Binary and other trees. Sections 8.1-8.9.
Assignment 3 given out.
8 Union/find application. Heaps || Sections 8.10.2,9.1-9.3,
and heap sort. and 9.5.1.
9 Leftist trees, Huffman codes, and || Sections 9.4 and 9.5
tournament trees. and Chapter 10.
Assignment 3 due.
10 Search trees. Do either AVL or || Chapter 11.
red-black trees. Histogramming. | Assignment 4 given out.
11 Graphs Sections 12.1-12.7.
12 Graphs and the greedy method. Sections 12.8-12.11
and 13.1-13.2.
' Assignment 4 due.
13 Container loading, 0/1 knapsack, | Section 13.3.
shortest paths, and spanning trees. | Assignment 5 given out.
14 Divide-and-conquer method. Chapter 14.
15 Dynamic programming. Chapter 15.
Assignment 5 due.
16 Backtracking and branch-and- | Chapters 16 and 17.
bound methods.




Preface XIII

ACKNOWLEDGMENTS

This book would not have been possible without the assistance, comments, and
suggestions of many individuals. I am deeply indebted to the following
reviewers for their valuable comments, which have resulted in a better
manuscript:

Jacobo Carrasquel Carnegie Mellon University
Yu Lo Cyrus Chang University of New Hampshire
Teofilo F. Gonzalez ~ University of California at Santa Barbara
Laxmikant V. Kale University of Illinois
Donald H. Kraft Louisiana State University
Sang W. Lee University of Michigan
Jorge Lobo University of Illinois at Chicago
Brian Malloy Clemson University
Thomas Miller University of Idaho
Richard Rasala Northeastern University
Craig E. Wills Worchester Polytechnic Institute
Neal E. Young Dartmouth College

Special thanks go to the students in my data structures and algorithms class
who provided valuable feedback and helped debug the manuscript. Addition-
ally, I am grateful to the following individuals at the University of Florida for
their contributions: Justin Bullard, Edward Y. C. Cheng, Rajesh Dasari, Thomas
Davies, Vinayak Goel, Hacjae Jung, Jawalant Patel, Sanguthevar Rajasekeran,
Gauri Sukhatankar, Gayathri Venkataraman, and Joe Wilson.

The WCB/McGraw-Hill book team has been a pleasure to work with.
Everyone contributed immensely to the quality of the final manuscript. The
members of this team are Tom Casson, Beth Cigler, Betsy Jones, Brad Kosirog,
Madelyn Underwood, John Wannemacher, and Michael Warrell.

Finally, I am indebted to the copy editor, June Waldman, for having done
an excellent job.

Sartaj Sahni
Gainesville
October 1997



BRIEF CONTENTS

PARTI PRELIMINARIES 1

Chapter 1
Chapter 2

PART I
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

PART III
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17

INDEX

Programming in C++ 1
Program Performance++ 45

DATA STRUCTURES 111
Data Representation 111

Arrays and Matrices 189
Stacks 239

Queues 283

Skip Lists and Hashing 325
Binary and Other Trees 371
Priority Queues 417
Toumament Trees 459
Search Trees 485

Graphs 555

ALGORITHM-DESIGN METHODS
The Greedy Method 615

Divide and Conquer 661
Dynamic Programming 711
Backtracking 751

Branch and Bound 787

817

X1V

615



CONTENTS

PARTI PRELIMINARIES

CHAPTER1 PROGRAMMINGINC++ 1
1.1 Introduction 3

1.2 Functions and Parameters 3
1.2.1 Value Parameters 3
122 Template Functions 4
1.2.3 Reference Parameters 5
1.24 Const Reference Parameters 6
1.2.5 Return Values 7
1.2.6 Recursive Functions 8
Fibonacci numbers
Factorial
Permutations



XVI Contents

1.3 Dynamic Memory Allocation 14
1.3.1 The Operator new 14
132 One-Dimensional Arrays 15
1.3.3 Exception Handling 15
1.34 The Operator delete 16
1.3.5 Two-Dimensional Arrays 17
14 Classes 20
14.1 TheClass Currency 20
14.2 Using a Different Representation 28
14.3 Operator Overloading 29
144 Throwing Exceptions 32
1.4.5 Friends and Protected Class Members 33
1.4.6 Addition of #1ifndef, #define, and #endif Statements
1.5 Testing and Debugging 37
1.5.1 WhatIs Testing? 37
Roots of a quadratic
152 Designing Tost Data 40
Finding the maximum element
1.5.3 Debugging 43
1.6 References and Selected Readings 44

CHAPTER2 PROGRAM PERFORMANCE 45
2.1 Introduction 47
2.2 Space Complexity 48
22.1 Components of Space Complexity 48
222 Examples 54
2.3 Time Complexity 57
23.1 Components of Time Complexity 57
232 Operation Counts 58
Polynomial evaluation
Rank sort
Selection sort
Bubble sort
Insertion sort
Sequential search
233 StepCounts 68
Matrix add, multiply, and transpose
Minimum and maximum
24  Asymptotic Notation (0,Q,0,0) 83
24.1 Big Oh Notation (0) 84
242 Omega Notation (Q) 88
243 Theta Notation (@) 89
244 LittleOh(o) 90

36



245 Properties 91
246 Complexity Analysis Examples 91
Binary search
2.5 Practical Complexities 98
2.6 Performance Measurement 102
2.6.1 Choosing Instance Size 102
26.2 Developing the Test Data 103
2.6.3 Setting Up the Experiment 104
2.7 References and Selected Readings 110

Contents XVII

PARTII DATA STRUCTURES

CHAPTER3 DATA REPRESENTATION 111
3.1 Introduction 113
3.2 LinearLists 114
3.3 Formula-Based Representation 116
33.1 Representation 116
332 The Exception Class NoMem 117
333 Operations 118
334 Evaluation 122
34 Linked Representation 129
34.1 The Classes ChainNode and Chain 129
342 Operations 130
343 Extensions to the Class Chain 136
344 AChain Iterator Class 137
345 Circular List Representation 138
34.6 Comparison with Formula-Based Representation
34.7 Doubly Linked List Representation 140
348 Summary 142
3.5 Indirect Addressing 146
3.5.1 Representation 146
35.2 Operations 147
3.6 Simulating Pointers 152
3.6.1 SimSpace Operations 153
3.6.2 Chains Using Simulated Pointers 157
3.7 AComparison 163
3.8 Applications 164
38.1 BinSort 164
382 RadixSort 170

139



