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Preface

This is a collection of papers dedicated to Richard E. Block and is the Pro-
ceedings of a conference held at the University of California, Riverside, February
18-20, 1995 on the occassion of his retirement. The conference was titled Modular
Interfaces and focussed on the interplay between the theory of Lie algebras of prime
characteristic, quantum groups and Lie superalgebras.

Professor Block’s research has largely been devoted to the study of Lie algebras in
characteristic p: in particular the classification at prime characteristic of simple Lie
algebras. The outstanding achievement in this direction is the result that he proved
jointly with Robert Wilson, that for p > 7, the restricted simple Lie algebras are of
classical or Cartan type. In proving this they established the Kostrikin—Shafarevic
conjecture.

Professor Block has also made major contributions to other areas of Lie theory
and algebra. We mention just two of them here since they help to explain the
topics of the conference: his work on differentiably simple rings which was used
(by just replacing p-truncated polynomials with the exterior algebra) to give the
structure of semisimple Lie superalgebras of characteristic zero, and his work on
Hopf algebras. The study of Lie superalgebras has been important for some time
now and has ramifications in physics as well. As for Hopf algebras, these have
attracted a great deal of attention, since M. Jimbo and V.G. Drinfeld independently
defined quantized enveloping algebras, or quantum groups, which are deformations
of Lie algebras in the category of Hopf algebras. Further, G.Lusztig discovered that
there is a remarkable connection between the representation theory of quantum
groups associated to simple Lie algebras at a root of unity and representations of
modular Lie algebras.

It thus seemed that a conference on this subject in honor of Richard Block was
particularly appropriate. The conference proved to be exciting with very stimu-
lating talks. We are indebted to the many participants (some of whom had to
find their own funds), both from the United States and abroad: their presence was
invaluable in making the conference successful.

The organizing committee consisted of Robert E. Blattner, Vyjayanthi Chari,
Gary Griffing, Ivan B. Penkov and Robert L. Wilson. We acknowledge financial as-
sistance from the NSF. We were also supported from a variety of university sources:
the Department of Mathematics, from University funds provided to Professor O.
Viro as the holder of the F. Burton Jones Chair, and the Dean’s Office at UCR.

The editors wish to thank many people associated with the conference and with
the Proceedings. We are grateful to Professor S.T. Yau for his generosity in offering
us the services of International Press and to Professor V.S. Varadarajan, whose
gentle persuasion had a good deal to do with getting this volume together and
published.
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We thank the chair of the department, Albert Stralka, whose help was crucial in
getting the conference organized. The staff in the Mathematics office in particular,
Linda Terry, Danielle McQueen and Susan Spranger were extremely efficient in
taking care of many of the practical details involved in the organization of the
conference and we are grateful for their help. We thank Jan Patterson for her
assistance in getting the articles ready for these proceedings. Finally, we thank
our graduate students Benjamin Edwards and Ivan Dimitrov for their help with all
kinds of practical matters during the conference.

Vyjayanthi Chari

Ivan B. Penkov
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Highest Weight Modules
for Locally Finite Lie Algebras

YURI BAHTURIN AND GEORGIA BENKART

Introduction

There have been a number of important investigations in the representation
theory of various classes of infinite-dimensional Lie algebras which generalize the
finite-dimensional simple Lie algebras over an algebraically closed field of character-
istic zero. However, the general representation theory of one natural class of such
algebras, namely the locally finite Lie algebras, remains virtually unexplored. These
algebras arise in conjunction with the structure theory of infinite-dimensional Lie
algebras and deformations of their universal enveloping algebras and in the study of
identical relations in groups and Lie algebras, for example, in the study of Burnside-
type problems. They also provide a parallel notion to locally finite groups, whose
theory is well-developed (see [KW]).

An algebra L is locally finite-dimensional, or locally finite for short, if each finite
subset of L generates a finite-dimensional subalgebra. The Lie algebra gl(oc) of
infinite matrices which have only finitely many nonzero entries is a well-studied
example (see [K, §7.11]). The algebra gl(oco) may be regarded as the direct limit
of the general linear Lie algebras gl(n) of n x n matrices, and indeed, that is the
appropriate viewpoint to adopt when dealing with locally finite Lie algebras. The
recent papers of the first author and H. Strade [BS1-BS3] exhibit a striking as-
sortment of locally finite simple Lie algebras over fields of arbitrary characteristic
which arise as direct limits of finite-dimensional simple Lie algebras. All the al-
gebras considered in [BS1-BS3] fall into the general framework of Lie algebras of
infinite matrices with only a finite number of nonzero diagonals. Such Lie algebras
are discussed in [KR], and the monograph of Kac and Raina describes many ap-
plications of locally finite simple Lie algebras such as gl(oco) to various problems
in mathematical physics. The infinite rank affine algebras, A, Ai, B+, C,
D+, (see [K, §7.11]) are also locally finite algebras, and their representations find
applications in Olshanskii’s work [01-03] on Yangians (certain deformations of
the universal enveloping algebras of loop algebras). Using results of Enright, Howe,
and Wallach [EHW] and the Jantzen form, Natarajan [N] has studied unitarity
questions for highest weight modules of direct limits of simple Lie algebras coming
from corner embeddings (see Sec. 3 below). All these prior investigations have

1991 Mathematics Subject Classification. 17B65, 17TB10.

This paper was written while the first author visited the University of Wisconsin, Madison
under the sponsorship of the Council for International Exchange of Scholars. He would like
to thank the University of Wisconsin, Madison for its hospitality and to gratefully acknowledge
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2 YURI BAHTURIN AND GEORGIA BENKART

focused on very specific (and in general very well-behaved) classes of locally finite
algebras.

Rather than reinvent fundamental results for each particular variety of locally
finite algebras, in this present paper we initiate research into the general represen-
tation theory of locally finite Lie algebras. We restrict ourselves from the outset
to modules with local systems of submodules to make the problems more tractable
and the results more applicable. One of our main concerns is with the behavior of
the weight lattice of locally finite Lie algebras. This is of special interest because for
many types of locally finite Lie algebras roots do not exist. As we show, in many
instances weights do not exist either. But for certain types of embeddings that
respect the triangular decompositions, weights do exist, and thus highest weight
modules arise naturally too in this context.

It is premature at this stage to make far-ranging predictions about the future
role of this subject. However, the representation theory of locally finite Lie alge-
bras leads naturally to very classical problems about the embedding of one finite-
dimensional simple Lie algebra into another which preserves their triangular de-
compositions, to the corresponding mapping of the weight lattices induced by such
an embedding, and so forth. Some of these questions are touched upon in this
article, but many more are omitted. In particular, questions about the characters
of highest weight modules over locally finite algebras, about the tensor products of
such modules, etc. are left for subsequent investigations.

1. Direct Limits of Modules

1.1 Let I be a directed partially ordered set (poset) indexing a collection {U(")};¢;
of rings (or algebras over a field F'). Then for every i;,i5 € I there exists i3 € I
such that i;, 72 < i3. Suppose for each ¢ € I there corresponds a nonempty directed
poset J() such that each j € J() labels a left U®)-module M), When j € J,
set 7 = i. Assume the disjoint union J = U;e;J® is a directed poset with the
property that j; < jy for j; € J®) and j, € J#2) implies j; = i; < i3 = jo.

1.2 Now suppose further that whenever ¢;,i, € I satisfy i; < i there is a ring
homomorphism ¢;, ;, : U — U2) guch that @iyinPisiy, = Gig.i, Whenever
17 < 19 < 13 and ¢;; = 1. Similarly assume that when j; < j, there is a
homomorphism v;, ;, : M (1) — MOU2) of abelian groups (or of vector spaces
if we are working with algebras and their modules over some field F') such that
Vs g2 Viajn = Vjs.;, Whenever j1 < jo < j3 and 9 ; = 1,,¢). These compatibility
conditions allow us to construct the direct limit & = limU and the direct limit

M =1limM ). We say that (U, M) = (UD, MD)),c; ic;is a direct limit of modules
if for any ji,j2 € J with j; < jo the following diagram is commutative:
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U0 @ M) By arGn)
(1.3) ¢']_2]_1 ® Yy 1 L Y50
U(j_z) ® M 2) Haa, M2)

Here p; : U@ @ M@ — MG denotes the mapping Mt u®m — u-m giving
the module structure on M),

1.4 When u € U® and z € MY, choose k € J with k =i and ¢ € J with j, k < £.
Then i < ¢, and we define

(1.5) uxx = ¢y, (u) - Ye ().

PROPOSITION 1.6. Suppose that (U, M) is a direct limit of modules. Then (1.5)
defines a U-module structure on M such that M) is a UY) -submodule of M.

PROOF. We have to show that if u is replaced by an equivalent v’ € U ), z by
2’ € MU', k by k' with &’ =4, and £ by ¢ with j',k’ < ¢, then
w' = ¢, (u') - e o (2)

is equivalent to the right side of (1.5), which we denote by w. However, since u’ is
equivalent to u in U, there is an m € I with 4,7’ < m such that ¢,, ;(u) = ¢ (u').
Likewise, there exists n € J with j,j' < n such that v, ;(z) = ¢, ;/(z'). Assume
r € J is such that 7 = m. If s € J is chosen greater than ¢,¢',n,r, theni,7’ <7 <5,
and the following holds:

Vs e(w) = s,e(dg ; (u) - e 5(2)) = b55(dg,(w) - Ys,e(Ye,5(x))

= ¢5,i(u) - ¥s 5 () = G5, (Pmi(w)) - Ys.n(¥n,;(z))

= ¢§,m(¢m,i’ ('U./)) : ws,n (wn,j’ (1',))

= @50 (u) - Y5 50 (2)

= ¢ 7 (b7 (W) Yso (Yo 5 (')

= ws.f’((ﬁf_i/ (’U,I) . W'.j’(ﬂfl))

=Yso (wl)
Thus, the action in (1.5) is well-defined. If z € MU and u € U@, then since
(1.5) is independent of the choice of ¢, we may take it to equal j. As a result,
uxz = ¢55(u) - Y;;(z) = u- 1, so that M is indeed a U)-submodule with its
original structure. Suppose we want to verify that a particular module axiom holds

- for example, (ujus)*x = u; * (ug xx) for elements u; € U y, € Ut e MO,
Take ki, ke € J with ky =41, ko = i3, and ¢ € J with j, k1, ko < ¢. Then

(uruz) * o = (¢z,i1 (u1)dg 4, (U2)> “Ye,j ()
= G, (w1) - (B, (w2) - Ye5(2))

= u * (ug * x).
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Arguing in this way we see that M is an Y-module. [

1.7 A generic example of the above is a module M over a unital ring &/ where M
and U have local systems of submodules and subrings respectively. By this we mean
that U has a set I = {S} of proper subrings S such that

(i) U = UserS, and
(ii) for any R, S € I there exists T € I such that R,S C T.

Associated to each S € I is a collection Jg of proper S-submodules of M, and for
the disjoint union J = UgeJs of the sets Jg, it is assumed that the following hold:

(ili) M = Upeg M, and

(iv) forany L € Jp, M € Jg, thereisaT € I and a N € Jr such that R,.SCT
and L,M C N.

The set I is ordered by inclusion: R < Sif RC S. f M € Jg, N € Jg, the
ordering on J is specified by setting M < N if R C S and M C N. The mappings
¢sr: R — S and YNy : M — N are the natural inclusions. To verify that
(1.3) holds, suppose that M € Jg, and for R < S assume N € Jg satisfies M C N.
Then for v € R and x € M,

Ynmopm(u®z) =yYym(u-z)=u-x
= ¢s.r(u) YN m(T) = pn <¢S.R(U) ® ¢N.M(fﬂ))
=pun o (Ps.r @Ynar)(u® ),
as required. Thus, (U, M) = (S, M)secr.rres is a direct limit of modules.

The next result provides a criterion for the irreducibility of a module having a
local system of submodules:

PROPOSITION 1.8. Assume M is a module over a ring U with a local system
I = {S} of subrings and a local system J = Uge;Js of submodules. Then M is
irreducible if and only if given any R-submodule M € Jr and any proper submodule
M' C M, there exists an S € I with RC S and an N € Jg with M C N such that
M'# M NN’ for any S-submodule N' of N.

PROOF. Assume the condition is violated by an R-submodule M’ of M for some
Reland M € Jg. Forany S D R and N € Jg with N D M, there exists an
S-submodule N’ C N with M’ = M A N'. Then for N < S+ M', N C N'. We
claim that N/ = U[WgNeJN is a proper U-submodule of M. Given any N € Jg with
N 2 M and any subring T" of U there is a subring U O S, T and a submodule P € J;;
sothat P D N D M. Then P UM =U«S*M =UxN D TN to show that
N is a submodule. Moreover, M NN C Uy <n(M N N) CUn<Nn(MNN')=M.
As M’ is proper, N # M, and since N contains M’ it is nonzero. It follows that
M is not irreducible.

Conversely, suppose that the condition is satisfied, and let A/ be a proper sub-

module of M. Then for some M € J, M’ NN Misa proper submodule of M. If
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N € J is such that M < N, then (NN N)NM = NNM = M'. Thus, it is possible
to find a submodule N’ = NN N of N with NN M = M’ for each M < N. This
contradiction shows that M must be irreducible. O

1.9 If each module M € J is irreducible, then the condition in Proposition 1.8
vacuously holds, and M is irreducible.

2. Modules with a Unique Maximal Submodule
and Verma Modules

THEOREM 2.1. Let U be a unital ring and M be a left U-module with a finite
generating set X. Suppose U has a local system I = {S} of subrings and M a local
system J = Use {M®)} of submodules where MS) = S - X for all S € I. If each
M) has a unique mazimal submodule, then so does M.

PRrROOF. It suffices to verify that the sum of proper U-submodules is always
proper. Since M is finitely generated it is enough to show that any finite sum
of proper submodules is proper, and for this, it is sufficient to handle the case
of two proper submodules. If Ny and N, are proper U-submodules, then there
exist S, R € I such that N; N M7 and N, N1 M) are proper in M) and M(S)
respectively. If R, S < T for T € I, then Ny N MT) and N, N MT) are proper in
M Since MT) has a unique maximal submodule, N; N M(T) + Ny 0N M(T) is
proper in M(T). Now if N + N, = M, then N; + N, D X, and each z € X can
be written as z = ny(x) + no(x) where n;(x) € N;, ¢ = 1,2. There exist A,B € I
with n;(z) € M and ny(x) € M(B). Choose C € I with T, A, B < C. Then
ni(x) € MO NN; for i = 1,2, and z € M) NN, + M(©) N N, which is a proper
submodule of M(©) since M(“) has a unique maximal submodule. Such a C € I
can be found for each x € X, and since X is finite, there is some D € I such that
X c MDA Ny + MP) N N,. The right-hand side is a proper D-submodule of
M) but D- X = MP), a contradiction. O

2.2 Suppose now that F' is an algebraically closed field of characteristic zero. As-
sume the Lie algebra g is the direct limit of a family {g¥ | i € I} (I a directed
poset) of finite-dimensional semisimple Lie algebras over F each of which has a
triangular decomposition
g =n o p® @nl?)

with respect to some Cartan subalgebra h(*) and some choice of base A() for the
root system R(*) corresponding to h(*). We say that the structural homomorphisms
RE g — gU) are triangular if they preserve the given triangular decompositions
so that ¢,;(n{)) C n{) and ¢,,(h”) C b for all 4,5 € I with i < j. The
homomorphism ¢;; extends to associative algebra homomorphism ¢;; : U B —s
U of the respective universal enveloping algebras U®) = U(g?)) and UV =
U(g9)). Tt is clear that

U(limg™) = U(g) = limU®.

The categories of g-modules and U(g)-modules are equivalent.
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2.3 Suppose h = limh® and ny = limngé). A g-module M is a highest-weight module
of highest weight A € h* if there is a vector m™ € M (a mazimal vector) such that
nomt =0,U(g)m* = M, and h-m™ = A(h)m™ for all h € h. The most important
example of a highest-weight module is the Verma module,

(2.4) V(X) =Ul(g) ®u(ey Fvt,

obtained by inducing from a one-dimensional submodule Fv™* for the Borel subal-
gebra b =h®n,, where n, vt =0 and h-vt = A(h)v™ for all h € . An arbitrary
highest-weight g-module M = U(g)m™ of highest weight X is a quotient of V()\)
via the map V(\) — M with u® vt — w-m™. Moreover, M has a local system
of submodules M) = U®m* and each M@ is a highest-weight g¥-module of
highest weight A() = X |; ). According to [H, Theorem 20.2 (d)] any highest-
weight module for g*), such as M, has a unique maximal submodule. Thus,
by Theorem 2.1, M has a unique maximal submodule. In particular, the Verma
module V' (\) has a unique maximal submodule, and as a consequence we have the
following result.

THEOREM 2.5. Suppose g = limg*) where the algebras g(*) are finite-dimensional

semisimple Lie algebras over an algebraically closed field of characteristic zero, and
assume the structural homomorphisms are triangular. Then g has a triangular
decompositiong=n_ @ hdn,.

(i) A highest-weight g-module has a unique mazimal submodule.

(i1) All irreducible highest-weight g-modules of highest weight A\ € h* are isomor-
phic.

2.6 It is worth noting that the conventional proof to show that a highest-weight
module M of highest weight A has a unique maximal submodule cannot be applied
in general to direct limit algebras. The typical argument (for example, when g is
a finite-dimensional semisimple algebra or a symmetrizable Kac-Moody algebra)
uses the fact that the algebra g decomposes into root spaces relative to b, and
hence M into weight spaces, and any proper submodule is contained in the sum
of the weight spaces M, with p # A. That guarantees that the sum of all proper
submodules is proper, and so it is the unique maximal submodule. As the examples
at the end of Section 6 illustrate, the algebra g = li‘rgg(i) need not have a root space

decomposition relative to h. The argument above circumvents this difficulty. The
direct limit algebras g which have been studied previously in [K], [KR], [N], and
[01-03] all have root space decompositions and so do not encounter this problem.

2.7 When the conditions of Theorem 2.5 are met, then up to isomorphism there
is a unique irreducible g-module with highest weight A € h* which we denote by
L(X). Suppose M = U(g)m™ is some highest-weight g-module with highest weight
A and let @ be its unique maximal submodule (which exists by Theorem 2.5), so
that L(A) = M/Q. Consider the local system M) = U®m* where U = U(g).
Each M@ is a highest-weight module of highest weight A(Y) = \ |p» and so has a
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unique maximal submodule N, Now Q = U;c Q") where Q1) = QN M@, Since
Q" is a proper g(-submodule of M® we have Q) C N(). If the submodule N
generated by the N is proper, then N = Q and M/Q = M/N has a local system
{M® /N®} of modules which are irreducible highest-weight modules with highest
weight A() = X |, ). In this case we may say L(\) = @L(A(i)).

3. Corner and Triangular Embeddings

3.1 To illustrate triangular embeddings of the kind discussed in the last section,
we present next certain embeddings of split semisimple Lie algebras. First consider
the infinite matrices over F' in

(3.2) gl(00) = {a = (ai;)ijez | aij = 0 if |i],|j| >> 0}

with the Lie bracket given by the matrix commutator [a,b] = ab — ba. Then the
standard matrix units e; j,4,j € Z, constitute a basis for gl(co). The span of the
matrix units e; ; where —n < 4,5 < n determines a general linear Lie algebra
gl(2n + 1), and spang{e; ; | —n < ¢,j < n — 1} forms a copy of gl(2n). Clearly
gl(m) C gl(m’) if m < m’ and gl(o0) = li_r’ngl(m). The subalgebra

(3.3) A ¥ {a € gl(co) | tr(a) = 0}
is the direct limit limsl(m) of the special linear subalgebras sl(m) = {a € gl(m) |
tr(a) = 0}.

3.4 Suppose b is the Cartan subalgebra of diagonal matrices in g = A, and assume
€; : h — F is the projection of a matrix onto the (¢,4) entry. Then the matrix unit
e;; with ¢ # j corresponds to the root €; — ¢; relative to h, and the set of roots
A = {€; —¢€;41 | t € Z} determines a base of the root system ® of g. Relative to this
choice of base, the positive roots are &+ = {¢; —¢; | —00 < i < j < oo}, and the
algebra g has the triangular decomposition g=n_@®h®n,, wheren, =3 ;8o
(resp. n_ =Y, o 8a) is the space of upper (resp. lower) triangular matrices. Each
subalgebra sl(m) has an analogous triangular decomposition into lower triangular,
diagonal, and upper triangular matrices, and the natural inclusion sl(m) — sl(m’)
for m < m’ is a triangular embedding.

3.5 The spaces gl(+00) = spanp{e; ; | 1 < i,j < oo} and A4 = {a € gl(+00) |
tr(a) = 0} are subalgebras of gl(c0). Moreover, gi(400) = limgl(m) where gl(m) =
spanp{e;; | 1 < 4,5 < m}, and Ao = limsi(m) wherefsk(m) = {a € gl(m) |
tr(a) = 0}. Relative to the Cartan subalget; h of diagonal matrices, sl(m) has a
triangular decomposition n_ @ h @ n; into lower triangular, diagonal, and upper

triangular matrices, and the embeddings si(m) — sl(m’) for m < m/ are also
triangular.

3.6 For k =1,...,m we define the m-complement of k to be
(3.7) k=m+1—k

and set
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4 1 ifk=1,...,n ©
5] Ck—{—l fk=n+1,..., m=2n

o1 (B), (D).
39 Ity ; = Geij — Ges o and

(3.10) B, =spanp{y;; |1 <i,j <m=2n+1}
Cnp =spanp{y;; |1 <i,j<m= 2n}
Dn = SpanF{yi,j | 1< 27.7 <m= 2”}7

where the (’s are as in (3.8)(B),(D) for B,, and D,, and (3.8)(C) for C,,, then with
respect to the Lie bracket

(3.11) [Yijs Yr.e] = 65.xCiYie — 8ieCir.j + 05 CiYp 7 — 07.1.Ci¥5.05

which comes from the Lie bracket on gl(oco), these are split simple algebras of types
B,.,C,, and D,, (with the exception Dy = A1 @ A).

3.12 Suppose when considering sl(n) or gl(n) that y, ; = e, ; for 1 <i,j <n. The
algebra sl(n) is a split simple Lie algebra of type A, _; whenever the characteristic
of F'is zero or p and p doesn’t divide n. When p divides n, there is a one-dimensional
center spanned by the identity element modulo which it is simple. Suppose Y =
A,B,C, D, and let Y,, denote the corresponding algebra. Then there is a natural
embedding of Y, into Y, taking y; ; to y;, where the y; ;’s are the spanning
elements of Y, ;. We refer to these embeddings as corner embeddings. In each
algebra spanp{y;;} NY, determines a Cartan subalgebra consisting of diagonal
matrices. The y, ;’s with ¢ < j are upper triangular matrices and the y, ;’s with
i > j are lower triangular matrices. The corner embeddings are triangular with
respect to the decomposition into lower triangular, diagonal, and upper triangular

matrices. The resulting algebras Y, = limY, for Y = A,B,C, D thus have
triangular decompositions. The natural inclusion of Y,,, Y = B, C, D, into sl(m)

or gl(m) (m =2n+1 or 2n), is also a triangular embedding.

3.13 The elements

hi =vyii —yic1.41 fori=1...., n—1,
pIT. (B)
h,, = Yn.n ((v) s

Yn—1.n-1 +yn.n (1))

span the Cartan subalgebra h of diagonal matrices in the algebra of type 4,, . B,,,C,,



