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Preface

This book presents the relationship between ultrafilters and topologies on groups. It
shows how ultrafilters are used in constructing topologies on groups with extremal
properties and how topologies on groups serve in deriving algebraic results about
ultrafilters.

The contents of the book fall naturally into three parts. The first, comprising Chap-
ters | through 5, introduces to topological groups and ultrafilters insofar as the semi-
group operation on ultrafilters is not required. Constructions of some important topo-
logical groups are given. In particular, that of an extremally disconnected topological
group based on a Ramsey ultrafilter. Also one shows that every infinite group admits
a nondiscrete zero-dimensional topology in which all translations and the inversion
are continuous.

In the second part, Chapters 6 through 9, the Stone—Cech compactification BG of
a discrete group G is studied. For this, a special technique based on the concepts of
a local left group and a local homomorphism is developed. One proves that if G is a
countable torsion free group, then G contains no nontrivial finite groups. Also the
ideal structure of BG is investigated. In particular, one shows that for every infinite
Abelian group G, BG contains 22! minimal right ideals.

In the third part, using the semigroup BG, almost maximal topological and left
topological groups are constructed and their ultrafilter semigroups are examined. Pro-
jectives in the category of finite semigroups are characterized. Also one shows that
every infinite Abelian group with finitely many elements of order 2 is absolutely w-
resolvable, and consequently, can be partitioned into @ subsets such that every coset
modulo infinite subgroup meets each subset of the partition.

The book concludes with a list of open problems in the field.

Some familiarity with set theory, algebra and topology is presupposed. But in gen-
eral, the book is almost selt-contained. It is aimed at graduate students and researchers
working in topological algebra and adjacent areas.

Johannesburg, November 2010 Yevhen Zelenyuk
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Chapter 1
Topological Groups

In this chapter some basic concepts and results about topological groups are pre-
sented. The largest group topology in which a given filter converges to the identity
is described. As an application Markov’s Criterion of topologizability of a count-
able group is derived. Another application is computing the minimum character of a
nondiscrete group topology on a countable group which cannot be refined to a nondis-
crete metrizable group topology. We conclude by proving Arnautov’s Theorem on
topologizability of a countably infinite ring.

1.1 The Notion of a Topological Group

Definition 1.1. A group G endowed with a topology is a ropological group if the
multiplication
n:GxG>3(x,y)—>xyeG

and the inversion
1:Gox—>xleG

are continuous mappings. A topology which makes a group into a topological group
is called a group topology.

The continuity of the multiplication and the inversion is equivalent to the continuity
of the function
WG xG>s(x,y)—xy led.

Indeed, p/(x.y) = p(x, (), t(x) = /(1. x) and p(x,y) = @' (x,(y)).
The continuity of j’ means that whenever a.bh € G and U is a neighborhood of
ab, there are neighborhoods V and W of a and b, respectively, such that

vwlcu.
It follows that whenever aq, ..., ap € G, ky. ..., ky € Z and U is a neighborhood
of alf‘ .. .aﬁ” € G, there are neighborhoods Vi, .... Vyofay,..., an, respectively,

such that
vkvkn c o,

Another immediate property of a topological group G 1is that the translations and
the inversion of G are homeomorphisms. Indeed, for each a € G, the left translation

A :Go3x—ax el
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and the right translation
Pa:G3x > xaeCG

are continuous mappings, being restrictions of the multiplication. The inversion ¢ is
continuous by the definition. Since we have also that A) ' = Ag—t, (,oa)—l = p,—1
and (! = ¢, all of them are homeomorphisms.

A topological space X is called homogeneous if for every a,b € X, there is a
homeomorphism f : X — X such that f(a) = b. If G is a topological group and
a.b € G, then Ap,—1 : G — G is a homeomorphism and A,,-1(a) = ba 'a = b.
Thus, we have that

Lemma 1.2. The space of a topological group is homogeneous.

Now we establish some separation properties of topological groups.

Lemma 1.3. Every topological group satisfving the Ty separation axiom is regular
and hence Hausdorff.

In this book, by a regular space one means a 73-space.

Proof. Let G be a Ty topological group. We first show that G is a 7-space. Since G
is homogeneous, it suffices to show that for every x € G \ {1}, there is a neighborhood
U of | not containing x. By Tp, there is an open set U containing exactly one of two
points 1. x. If I € U, we are done. Otherwise xU Visa neighborhood of 1 not
containing x.

Now we show that for every neighborhood U of 1, there is a closed neighborhood
of 1 contained in U. Choose a neighborhood V' of 1 such that VV~! € U. Then for
every x € G\ U, onehas xVNV = @. Indeed, otherwise xa = b forsomea.b € V,
which gives us that x = ba—' € VV~! C U, acontradiction. Hencecl V C U. O

In fact, the following stronger statement holds.
Theorem 1.4. Every Hausdorff topological group is completely regular.
Proof. See [55, Theorem 10]. a
Theorem 1.4 is the best possible general separation result. However, for countable
topological groups, it can be improved.
A space is zero-dimensional if it has a base of clopen (= both closed and open)

sets. Note that if a Tp-space is zero-dimensional, then it is completely regular.

Proposition 1.5. Every countable regular space is normal and zero-dimensional.
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Proof. Let X be a countable regular space and let A and B be disjoint closed subsets
of X. Enumerate A and B as

A={ay, n<w} and B ={b,:n < w}.
Inductively, for each n < w, choose neighborhoods U, and V}, of a, and b, respec-
tively such that
@ cddlU,NB=@and ANclV, =07,
(b) Up N (U<, Vi) =9 and (J;.,Ui) NV, =0, and
() UsNV, =0.
(a) is needed to satisfy (b). Conjunction of (b) and (c) is equivalent to

(Uu)n (U)o

i<n i<n

It follows that
U= Up and V=]V,

are disjoint neighborhoods of A and B, respectively.

Now, having established that X is normal, let U be an open neighborhood of a
point x € X. Without loss of generality one may suppose that U # X. Then by
Urysohn’s Lemma, there is a continuous function f : X — [0, 1] such that f(x) =0
and f(X \ U) = {1}. Since X is countable, there is r € [0,1] \ f(X). Then
750, 7)) = £71([0,7]) is a clopen neighborhood of x contained in U . a

It follows from Lemma 1.3 and Proposition 1.5 that

Corollary 1.6. Every countable Hausdorff topological group is normal and zero-
dimensional.

Note that every first countable Hausdortf topological group is also normal. (A space
is first countable if every point has a countable neighborhood base.) This is immediate
from the fact that every metric space is normal and the following result.

Theorem 1.7. A Hausdorff topological group is metrizable if and only if it is first
countable. In this case, the metric can be taken to be left invariant.

Proof. See [34, Theorem 8.3]. O

Starting from Chapter 5, all topological groups are assumed to be Hausdorff.
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1.2 The Neighborhood Filter of the Identity

For every set X,
P(X)=1{Y: Y C X}.
Definition 1.8. Let X be a nonempty set. A filter on X is a family ¥ C P (X ) with
the following properties:
() XeFand0 ¢ F,
(2) itA,Be F,then AN B € ¥, and
3)ifAeFand A< B C X,then B € ¥.

In other words, a filter on X is a nonempty family of nonempty subsets of X closed
under finite intersections and supersets. A classic example of a filter is the set Ny
of all neighborhoods of a point x in a topological space X called the neighborhood
filter of x. By a neighborhood of x one means any set whose interior contains x. The

system {:Nx : x € X} of all neighborhood filters on X is called the neighborhood
system of X.

Theorem 1.9. Let X be a space and let {Nyx : x € X} be the neighborhood system
of X. Then

(1) foreveryx € X and U € Ny, x € U, and

(ii) forevery x € X and U € Ny, {y € X : U € Ny} € N,.

Conversely, given a set X and a system {Nx : x € X} of filters on X satisfying
conditions (1)—(i1), there is a unique topology T on X for which { Ny : x € X} is the
neighborhood system.

Proof. That the neighborhood system { N, : x € X} of a space X satisfies (i)—(ii) is
obvious. We need to prove the converse.
Define the operator int on the subsets of X by putting for every 4 C X

intA={xeX:AeN,}
We claim that it satisfies the following conditions:
(a) nt X = X,
(b) int A C A,
(c) int (int A) = int A, and

(d) int (AN B) = (int A) N (int B).
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Indeed, for every x € X, X € Ny, consequently x € int X, and so (a) is satisfied.

For (b), if x € int A, then A € Ny, and so by (i), x € A.

To check (c), let x € int A. Then A € N,. Applying (ii) we obtain thatint A € N.
It follows that x € int (int A). Hence int A C int (int A). The converse inclusion
follows from (b).

To check (d), let x € (int A)N(int B). Then A € Ny and B € Ny,s0 AN B € Ny.
It follows that x € int (A N B). Hence (int A) N (int B) C int (A N B). Conversely,
let x € int (AN B). Then AN B € Ny, consequently A € N, and B € Nx. It follows
that x € (int A) N (int B). Hence int (A N B) C (int A) N (int B).

It follows from (a)—(d) that there is a unique topology 7 on X such that int is the
interior operator for (X, 7). We have that a subset U € X is a neighborhood of a
point x € X in 7 if and only if x € int U, and so if and only if U € Ny. Hence,
{Nx : x € X} is the neighborhood system for (X, 7). a

In a topological group, the neighborhood system is completely determined by the
neighborhood filter of the identity.

Lemma 1.10. Let G be a topological group and let N be the neighborhood filter of 1.
Then for every a € G, aN = Na is the neighborhood filter of a.

Here,
aN ={aB:Be N} and Na={Ba:BeN}.

Proof. Since both A, and p, are homeomorphisms and A,(1) = p,(1) = a,
aN = Ag(N) = pa(N) = Na
is the neighborhood filter of a. a

The next theorem characterizes the neighborhood filter of the identity of a topolog-
ical group.

Theorem 1.11. Ler (G, T) be a topological group and let N be the neighborhood
filter of 1. Then

(1) foreveryU € N, thereis V € N such that VV C U,
(2) foreveryU € N, U™ € N, and
(3) foreveryU € N and x € G, xUx™' € N.

Conversely, given a group G and a filter N on G satisfying conditions (1)—(3), there
is a unique group topology T on G for which N is the neighborhood filter of 1. The
topology T is Hausdorff if and only if

@ NN = {1},
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Note that conditions (2) and (3) in Theorem 1.11 are equivalent, respectively, to
(2) N7! = N, and
(3') forevery x € G, xNx~! = N,
where N ! = {471 : Ae Nand xNx~! = {xAx~ ! : A e N}

Proof. That the neighborhood filter of 1 satisfies (1)—(3) follows from the continuity
of the multiplication p(x, y) at (1. 1) and the mappings ¢(x) and Ax(p,—1(y)) at 1.
To prove the converse, consider the system {x.N : x € G}. We claim that it satisfies
the conditions of Theorem 1.9.

To check (i), let x € G and U € N. It follows from (1)—(2) that there is V € N
suchthat VV~™!' C U. Thenx e xVV~! C xU.

To check (ii), let x € G and U € N. It follows from (1) that there is V € N such
that VV C U. Forevery y € xV, yV C xVV C xU, consequently

xV ClyeG: : xUe€yN},
and so
{yeG:xUeyN}exN.

Now by Theorem 1.9, there is a unique topology 7 on G such that for each x € G,
xN is the neighborhood filter of x, that is, the neighborhoods of x are of the form
xU, where U is a neighborhood of 1. To see that T is a group topology. let a. b €
G be given and let U be a neighborhood of 1. Using conditions (1)—(3) choose a
neighborhood V of 1 such that 5V V~1h~! C U. Then

avbV)y ' =avv=bt =ab bvV e cabTU.
Since 7 is a group topology, it is Hausdorff if and only if it is a T} -topology, and
so if and only if (" N = {1}. O
The notion of a filter is closely related to that of a filter base.

Definition 1.12. Let X be a nonempty set. A filter base on X is a nonempty family
B < P(X) with the following properties:

(1) 0 ¢ B, and
(2) forevery A, B € B thereis C € B suchthat C € AN B.

Equivalently, 8 € £ (X) is a filter base if
F ={AC X :AD Bforsome B € B}

is a filter, and in this case we say that B is a base for . Note that if ¥ is a filter,
then 8 C F is a base for ¥ it and only if for every A € ¥ there is B € B such that
B C A.



Section 1.3 The Topology T (¥) 7

If X is a topological space and x € X, then a base for the neighborhood filter of x
is called a neighborhood base at x.
As a consequence we obtain from Theorem 1.11 the following.

Corollary 1.13. Let B be a filter base on G satisfying the following conditions:
(1) foreveryU € B, thereis V € B such that VV C U,
(2) foreveryU € 8, U™! € B, and
(3) foreveryU € Band x € G, xUx™ ' € 8.

Then there is a unique group topology T on G for which B is a neighborhood base
at 1. The topology T is Hausdorff if and only if

4 NB={1}.

1.3 The Topology 7 (¥)

Definition 1.14. For every filter ¥ on a group G, let 7 (¥') denote the largest group
topology on G in which ¥ converges to 1.

Definition 1.14 is justified by the fact that for every family {7; : i € I} of group
topologies on G, the least upper bound \/; ., 7; taken in the lattice of all topologies
on G is a group topology.

Definition 1.15. For every filter ¥ on a group G, let # denote the filter with a base
consisting of subsets of the form

J x4 uAa vt

xeG

where foreach x € G, A, € F.

Lemma 1.16. For every filter ¥ on a group G, F is the largest filter contained in
such that

i len 7,

(i) F~'=F, and

(iii) foreveryx € G, xFx~' = F.

Proof. That ¥ satisfies (i) is obvious. To check (ii) and (iii), let A, € ¥ for each
x € G. Then

( | x(4xu At U {1}).\»—')_l = |J x(Acu Azt v

xeG xeG
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Consequently, F~1 = . Next, for every v € G,

y(Ux(acuazt uihe )y = | px(ac w47 Ui

xeG xeG
= J x4y uall ufipx!
xeG
= |J xB:uB U
xeG

where By = A,-1, for each x € G. It follows that yFyl=¢%.

To see that % is the largest filter on G contained in ¥ and satisfying (i)—(iii), let &
be any such filter and let A € §. Then 1 € A and for each x € G, there is Ax € §
such that x(A4, U A;l)x_l C A. Since § € ¥, Ay € ¥ foreach x € G. Define
Be¥ by

B=|JxAcuatuipxh
xeG
Then B C A,andso A € F. O

For every n € N, let S, denote the group of all permutations on {1, ..., ni.
The next theorem describes the topology 7 (¥).

Theorem 1.17. For every filter ¥ on a group G, the neighborhood filter of 1 in T (F)
has a base consisting of subsets of the form

D U li[B,m-).

n=1lneS,i=1
where (By);2 | is a sequence of members of ¥ .

Proof. It is clear that these subsets form a filter base on G. In order to show that
this is the neighborhood filter of 1 in a group topology, it suffices to check conditions
(1)—(3) of Corollary 1.13. Let (B,);=, be any sequence of members of 7.

To check (1). define the sequence (Cy)52, in F by C,, = B3, N By,—1. Then for
foreveryn € N and m, p € S,

n n n n 2n
[T1Co 160 < [ Banir-1 [ 1 Baoir = [] Botih

i=1 i=1 =1 i=1 j=1
where o € Sy, is defined by
2r(j)—1 ifj <n

o(j)= .
2p(j —n) ifj > n.
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It follows that

(G U ﬁCnu))(G U ﬁCn(i))E

n=1xge§, i=1 n=1nxes, i=1 n

n
U 1 B0

1res, i=1

(@

To check (2), define the sequence (C,);2, in F by C, = Bn_1 (Lemma 1.16).
Then foreveryn € N and r € §,,.

n 1 n n

-1
( l_[ B”U)) = l—[ By = 1_[ Coti)
i=1 i=1 =1

where p € S, is defined by p(i) = m(n + | — ). Consequently,

(G U li[Bﬂ(nyl = O U ll[an

n=1nxeS, i=1 n=1neS,i=1

To check (3), let x € G. Define the sequence (Cy);2, in ¥ by C, = xBpx~!
(Lemma 1.16). Then for every n € N and 7 € §,,,

n

n n
"'( [1 Bn(ﬂ)"'al = [TxBzirx™" =[] Crer

i=1 i=1 i=1
Consequently,
oo n o0 n
(U U 80) ' =U U [1o
n=1nxes, i=1 n=1rxes, i=1

Now let G be endowed with any group topology in which ¥ converges to | and
let U be a neighborhood of 1. Note that every neighborhood of | is a member of ¥
(Lemma 1.16). Choose inductively a sequence (Vy);2, of neighborhoods of 1 such
that Vo = U and for every n,

Va+1Vat1Vat1 € Vi
Then whenever ny. . ... ny are distinct numbers in N, one has

an Vn;\ g Vn-

where n = min{nq,..., ng} — 1. (To see this, pick i € {I,..., k} such that n; =
min{ny,..., ni} and write Vi, -+ Vyoas (Vg oo+ Vi, )V, (Vi oy -+ Vi )2 Tt fol-
lows that

o0 n

U U Mo cv

n=1nxeS,i=1

and so U is a neighborhood of 1 in 7 (¥). ]
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1.4 Topologizing a Group

Definition 1.18. Let G be a countably infinite group. Enumerate G as {g, : n < w}
without repetitions and with gg = 1.
(i) For every infinite sequence (a,);2 in G, define U((an)5>,) € G by

Ulan)z) = | U T] Bro)-

n=1nxeS,i=1

where B; = (J7Z, gj{l,afﬁr‘j azi+1;+1 }g;‘.
(i1) For every finite sequence a1, . . ., dp in G, define U(a,. ..., an) € G by
Ulay.....an) = | J H By,
weS,i=1
where B! = | Lgidl, al+] aﬁ_llﬂ ..... a,f‘}g . That is, U(ay..... an) con-

sists of all elements of the form

. —1 . ]
g]|Clg_/] ...gj”(ngjll ’

where j; € {0,..., n—m()}and ¢; € {1, "n(z)+j ..... jEl}foreachi =15a:.5 n,
and r € S,. In particular, U(a;) = {I ,al v Also put U(9) = {1}.
(iii) For every finite sequence ay, .. .. an—1inG,letT(ay,.... dn—1.x) denote the

set of group words f'(x) in the alphabet G U{x} in which variable x occurs and which
have the form

f) =gjherg;,' - gineng;,)
where j; € {0,..., n—om()}and ¢; € {l, a”(lH] ..... nill x*1Y for each i =
..., n,and € Sy,. In particular, T'(x) consists of two group words x and x !

Of course, in the case where G is Abelian, all these definitions look simpler. In
particular,
n

B" = {0, +aj, ..., +a,} and Ulay,.... a,,):ZB.".

! i
i=1
Theorem 1.19. For every sequence (a,); 2, in G, the following statements hold:
(1) U((an);2,) is a neighborhood of 1 in T ((an)5>,).
(2) U((an)n_l U;.,o=1 U(a1 ..... (ln),

3) Ulay,.... ay) =Ulay..... an—1)U{f(an): f(x) € T(a;..... dp—1,X)} for
everyn € N, and

(4) foreveryn € N and f(x) € T(ay,..., an—1,x), f(1) e U(ay,..., dp—1).



