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Preface

When there are so many textbooks on logic already available, an au-
thor of a new one must expect to be challenged for explanations as
to why he has added to their number. I have four main excuses. I
am not happy with the treatments of well-foundedness nor of the ax-
iomatisation of set theory in any of the standard texts known to me.
My third excuse is that, because my first degree was not in mathemat-
ics but in philosophy and music, I have always been more preoccupied
with philosophical concerns than have most of my colleagues. Both the
intension-extension distinction and the use-mention distinction are not
only philosophically important but pedagogically important too: this is
no coincidence. Many topics in mathematics become much more acces-
sible to students if approached in a philosophically sensitive way. My
fourth excuse is that nobody has yet written an introductory book on
logic that fully exploits the expository possibilities of the idea of an in-
ductively defined set or recursive datatype. I think my determination to
write such a book is one of the sequele of reading Conway’s beautiful
book (2001) based on lectures he gave in Cambridge many years ago
when I was a Ph.D. student.

This book is based on my lecture notes and supervision (tutorial) notes
for the course entitled “Logic, Computation and Set Theory”, which is
lectured in part II (third year) of the Cambridge Mathematics Tripos.
The choice of material is not mine, but is laid down by the Mathematics
Faculty Board having regard to what the students have learned in their
first two years. Third-year mathematics students at Cambridge have
learned a great deal of mathematics, as Cambridge is one of the few
schools where it is possible for an undergraduate to do nothing but
mathematics for three years; however, they have done no logic to speak
of. Readers who know more logic and less mathematics than did the

ix



X Preface

original audience for this material — and among mathematicians they
may well be a majority outside these islands — may find the emphasis
rather odd. The part IIb course, of which this is a component, is designed
for strong mathematics students who wish to go further and who need
some exposure to logic: it was never designed to produce logicians. This
book was written to meet a specific need, and to those with that need
I offer it in the hope that it can be of help. I offer it also in the hope
that it will convey to mathematicians something of the flavour of the
distinctive way logicians do mathematics.

Like all teachers, I owe a debt to my students. Any researcher needs
students for the stimulating questions they ask, and those attempting to
write textbooks will be grateful to their students for the way they push
us to give clearer explanations than our unreflecting familiarity with
elementary material normally generates. At times students’ questions
will provoke us into saying things we had not realised we knew. I am
also grateful to my colleagues Peter Johnstone and Martin Hyland for
exercises they provided.
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Introduction

In the beginning was the Word, and the Word was with God, and the Word
was God. The same was also in the beginning with God.
John’s Gospel, ch 1 v 1

Despite having this text by heart I still have no idea what it means.
What I do know is that the word that is translated from the Greek into
English as ‘word’ is Aoyoo, which also gave us the word ‘logic’. It is
entirely appropriate that we use a Greek word since it was the Greeks
who invented logic. They also invented the axiomatic method, in which
one makes basic assumptions about a topic from which one then derives
conclusions.

The most striking aspect of the development of mathematics in its
explosive modern phase of the last 120-odd years has been the exten-
sion of the scope of the subject matter. By this I do not mean that
mathematics has been extended to new subject areas (one thinks imme-
diately of the way in which the social sciences have been revolutionised
by the discovery that the things they study can be given numerical val-
ues), even though it has, nor do I mean that new kinds of mathematical
entities have been discovered (imaginary numbers, vectors and so on),
true though that is too. What I mean is that in that period there was a
great increase in the variety of mathematical entities that were believed
to have an independent existence.

To any of the eighteenth-century mathematicians one could have be-
gun an exposition “Let n be an integer...” or “Let n be areal...” and
they would have listened attentively, expecting to understand what was
to come. If, instead, one had begun “Let f be a set of reals ...” they
would not. The eighteenth century had the idea of an arbitrary integer
or an arbitrary point or an arbitrary line, but it did not have the idea of
an arbitrary real valued function, or an arbitrary set of reals, or an ar-



2 Introduction

bitrary set of points. During this period mathematics acquired not only
the concept of an arbitrary real-valued function, but also the concepts of
arbitrary set, arbitrary formula, arbitrary proof, arbitrary computation,
and additionally other concepts that will not concern us here. A reader
who is not happy to see a discussion begin “Let x be an arbitrary ...”,
where the dots are to be filled in with the name of a suite of entities
(reals, integers, sets), is to a certain extent not admitting entities from
that suite as being fully real in the way they admit entities whose name
they will accept in place of the dots. This was put pithily by Quine:
“To be is to be the value of a variable”. There are arbitrary X’s once
you have made X’s into mathematical objects.

At the start of the third millenium of the common era, mathematics
still has not furnished us with the idea of an arbitrary game or arbitrary
proof. However, there is a subtle difference between this shortcoming
and the eighteenth century’s lack of the concept of an arbitrary function.
Modern logicians recognise the lack of a satisfactory formalisation of a
proof or game as a shortcoming in a way in which the eighteenth century
did not recognise their lack of a concept of arbitrary function.

This historical development has pedagogical significance, since most of
us acquire our toolkit of mathematical concepts in roughly the same or-
der that the western mathematical tradition did. Ontogeny recapitulates
phylogeny after all, and many students find that the propensity to rea-
son in a freewheeling way about arbitrary reals or functions or sets does
not come naturally. The ontological toolkit of school mathematics is to
a large extent that of the eighteenth century. I remember when studying
for my A-level being nonplussed by Richard Watts-Tobin’s attempt to
interest me in Rolle’s theorem and the intermediate value theorem. It
was too general. At that stage I was interested only in specific functions
with stories to them: Znemx2" was one that intruiged me, as did the
function X,enz™ - n! in Hardy’s (1949), which I encountered at about
that time. I did not have the idea of an arbitrary real-valued function,
and so I was not interested in general theorems about them.

Although understanding cannot be commanded, it will often come for-
ward (albeit shyly) once it becomes clear what the task is. The student
who does not know how to start answering “How many subsets does a
set with n elements have?” may perhaps be helped by pointing out that
their difficulty is that they are less happy with the idea of an arbitrary
set than with the idea of an arbitrary number. It becomes easier to
make the leap of faith once one knows which leap is required.

Some of these new suites of entities were brewed in response to a need
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to solve certain problems, and the suites that concern us most will be
those that arose in response to problems in logic. Logic exploded into life
in the twentieth century with the Hilbert programme and the celebrated
incompleteness theorem of Godel. It is probably a gross simplification
to connect the explosive growth in logic in the twentieth century with
the Hilbert programme, but that is the way the story is always told. In
his famous 1900 address Hilbert posed various challenges whose solution
would perforce mean formalising more mathematics. One particularly
pertinent example concerns Diophantine equations, which are equations
like 3 + y® = 2% + w3, where the variables range over integers. Is there
a general method for finding out when such equations have solutions
in the integers? If there is, of course, one exhibits it and the matter
is settled. If there is not, then in order to prove this fact one has to
be able to say something like: “Let A be an arbitrary algorithm ...”
and then establish that A did not perform as intended. However, to do
that one needs a concept of an algorithm as an arbitrary mathematical
object, and this was not available in 1900. It turns out that there is
no method of the kind that Hilbert wanted for analysing diophantine
equations, and in chapter 6 we will see a formal concept of algorithm of
the kind needed to demonstrate this.

This extension of mathematical notation to nonmathematical areas
has not always been welcomed by mathematicians, some of whom appear
to regard logic as mere notation: “If Logic is the source of a mathemati-
cian’s hygiene, it is not the source of his food” is a famous sniffy aside
of Bourbaki. Well, one bon mot deserves another: there is a remark of
McCarthy’s as famous among logicians as Bourbaki’s is to mathemati-
cians to the effect that, “It is reasonable to hope that the relationship
between computation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the last.” With this
at the back our minds it has to be expected that when logicians write
books about logic for mathematicians they will emphasise the possible
connections with topics in theoretical computer science.

The autonomy of syntax

One of the great insights of twentieth-century logic was that, in order to
understand how formulee can bear the meanings they bear, we must first
strip them of all those meanings so we can see the symbols as themselves.
Stripping symbols of all the meanings we have so lovingly bestowed on
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them over the centuries in various unsystematic ways1 seems an ex-
tremely perverse thing to do — after all, it was only so that they could
bear meaning that we invented the symbols in the first place. But we
have to do it so that we can think about formule as (perhaps mathe-
matical) objects in their own right, for then can we start to think about
how it is possible to ascribe meanings to them in a systematic way that
takes account of their internal structure. That makes it possible to prove
theorems about what sort of meanings can be born by languages built
out of those symbols. These theorems tend to be called completeness
theorems, and it is only a slight exaggeration to say that logic in the
middle of the twentieth century was dominated by the production of
them.

It is hard to say what logic is dominated by now because no age
understands itself (a very twentieth century insight!), but it does not
much matter here because all the material in this book is fairly old
and long-established. All the theorems in this will be older than the
undergraduate reader; most of them are older than the author.

Finally, a cultural difference. Logicians tend to be much more con-
cerned than other mathematicians about the way in which desirable
propositions are proved. For most mathematicians, most of the time,
it is enough that a question should be answered. Logicians are much
more likely to be concerned to have proofs that use particular methods,
or refrain from exploiting particular methods. This is at least in part
because the connections between logic and computation make logicians
prefer proofs that correspond to constructions in a way which we will see
sketched later, but the reasons go back earlier than that. Logicians are
more likely than other mathematicians to emphasise that ‘trivial’ does
not mean ‘unimportant’. There are important trivialities, many of them
in this book. The fact that something is unimportant may nevertheless
itself be important. There are some theorems that it is not a kindness
to the student to make seem easy. Some hard things should be seen to
be hard.

1 The reader is encourged to dip into Cajori’s History of Mathematical Notations
to see how unsystematic these ways can be and how many dead ends there have
been.
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Definitions and notations

This chapter is designed to be read in sequence, not merely referred back
to. There are even exercises in it to encourage the reader.

Things in boldface are usually being defined. Things in italic are
being emphasised. Some exercises will be collected at the end of each
chapter, but there are many exercises to be found in the body of the
text. The intention is that they will all have been inserted at the precise
stage in the exposition when they become doable.

I shall use lambda notation for functions. Az.F(x) is the function
that, when given z, returns F(z). Thus A\z.z? applied to 2 evaluates to
4. 1 shall also adhere to the universal practice of writing ‘Azy.(...)’ for
‘Az.(Ay.(...))". Granted, most people would write things like ‘y = F(z)’
and ‘y = z?’, relying on an implicit convention that, where ‘z’ and ‘y’
are the only two variables are used, then y is the output (“ordinate”)
and z is the input (“abcissa”). This convention, and others like it, have
served us quite well, but in the information technology age, when one
increasingly wants machines to do a lot of the formula manipulations
that used to be done by humans, it turns out that lambda notation and
notations related to it are more useful. As it happens, there will not be
much use of lambda notation in this text, and I mention it at this stage
to make a cultural point as much as anything. By the same token, a
word is in order at this point on the kind of horror inspired in logicians
by passages like this one, picked almost at random from the literature
(Ahlfors, 1953 p. 69):

Suppose that an arc vy with equation z = z(t),a < t < 3 is contained in a
region (0, and let f be defined and continuous in Q. Then w = w(t) = f(z(t))

defines an arc . ..

The linguistic conventions being exploited here can be easily followed
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by people brought up in them, but they defy explanation in any terms
that would make this syntax machine-readable. Lambda notation is
more logical. Writing ‘w = At.f(z(t))’ would have been much better
practice.

I write ordered pairs, triples, and so on with angle brackets: (z,y). If
z is an ordered pair, then fst(x) and snd(z) are the first and second
components of x. We will also write ‘@’ for ‘xy ...x,’ .

1.1 Structures

A set with a relation (or bundle of relations) associated with it is called
a structure, and we use angle brackets for this too. (X, R) is the set X
associated with the relation R, and (X, Ri,Rz...R,) is X associated
with the bundle of relations — Ry ... R,. For example, (IN, <) is the
naturals as an ordered set.

The elements are “in” the structure in the sense that they are members
of the underlying set — which the predicates are not. Often we will use
the same letter in different fonts to denote the structure and the domain
of the structure; thus, in “OM = (M,...)” M is the domain of 9. Some
writers prefer the longer but more evocative locution that M is the
carrier set of 91, and I will follow that usage here, reserving the word
‘domain’ for the set of things that appear as elements of n-tuples in R,
where R is an n-place relation. We write ‘dom(R)’ for short.

Many people are initially puzzled by notations like (IN, <). Why spec-
ify the ordering when it can be inferred from the underlying set? The
ordering of the naturals arises from the naturals in a — natural(!) — way.
But it is common and natural to have distinct structures with the same
carrier set. The rationals-as-an-ordered-set, the rationals-as-a-field and
the rationals-as-an-ordered-field are three distinct structures with the
same carrier set. Even if you are happy with the idea of this distinction
between carrier-set and structure and will not need for the moment the
model-theoretic jargon I am about to introduce in the rest of this para-
graph, you may find that it helps to settle your thoughts. The rationals-
as-an-ordered-set and the rationals-as-an-ordered-field have the same
carrier set, but different signatures (see page 48). We say that the
rationals-as-an-ordered-field are an expansion of the rationals-as-an-
ordered-set, which in turn is a reduction of the rationals-as-an-ordered-
field. The reals-as-an-ordered-set are an extension of the rationals-
as-an-ordered-set, and, conversely, the rationals-as-an-ordered-set are a
substructure of the reals. Thus:
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Beef up the signature to get an expansion.

Beef up the carrier set to get an extension.

Throw away some structure to get a reduction.

Throw away some of the carrier set to get a substructure.

We will need the notion of an isomorphism between two structures.
If (X,R) and (Y, S) are two structures, they are isomorphic iff there
is a bijection f between X and Y such that, for all z,y € X, R(z,y) iff
S(f (@), f(y))-

(This dual use of angle brackets for tupling and for notating structures
has just provided us with our first example of overloading. “Over-
loading”!? It is computer science-speak for “using one piece of syntax
for two distinct purposes” — commonly and gleefully called “abuse of
notation” by mathematicians.)

1.2 Intension and extension

Sadly the word ‘extension’, too, will be overloaded. We will not only
have extensions of models — as just now — but extensions of theories
(of which more later), and there is even extensionality, a property of
relations. A binary relation R is extensional if (Vz)(Vy)(z = y «—
(Vz)(R(z,2) <« R(y,z)). Notice that a relation can be extensional
without its converse (converses are defined on page 9) being extensional:
think “square roots”. An extensional relation on a set X corresponds
to an injection from X into P(X), the power set of X. For us the most
important example of an extensional relation will be €, set membership.
Two sets with the same members are the same set.

Finally, there is the intension extension distinction, an informal de-
vice but a standard one we will need at several places. We speak of
functions-in-intension and functions-in-extension and in general
of relations-in-intension and relations-in-extension. There are also
‘intensions’ and ‘extensions’ as nouns in their own right.

The standard illustration in the literature concerns the two properties
of being human and being a featherless biped — a creature with two legs
and no feathers. There is a perfectly good sense in which these concepts
are the same (one can tell that this illustration dates from before the
time when the West had encountered Australia with its kangaroos!), but
there is another perfectly good sense in which they are different. We
name these two senses by saying that ‘human’ and ‘featherless biped’
are the same property in extension but different properties in intension.



