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Preface

I have been lecturing on theoretical ecology regularly for the past ten years, first
at the University of Ziirich, Switzerland, then at the University of Guelph. When
I began lecturing in Ziirich, it was suggested that I provide a “Scriptum” to go
with the lectures, in keeping with European academic custom. When I moved
to Canada I continued updating and refining these “prepared lecture notes,” as
there was no book I could use as a “textbook” in the North American sense.

Over the years many people suggested that it would be useful to publish
the notes for a wider public, but I resisted this notion, mindful that it would
entail an order of magnitude more work on my part. But as the lecture notes
evolved, on the one hand, and I became increasingly aware, on the other hand,
of widespread misunderstanding among ecologists as to the nature and func-
tioning of theory, my resistance weakened. The result is the present volume.

The writing retains something of the informal, “conversational” character
of its lecture note forebears. The audience I have in mind is mainly students of
ecology with empirical interests, though I would hope that a budding theorist
could find inspiration here as well. A very strong attempt is made to communicate
mathematical thinking to people who may not by nature find this way of thinking
very natural—the reader is “taken by the hand” far more than is customary in
mathematical writing.

The book contains the basics (and somewhat more) of population, com-
munity, and life-history theory. It does not attempt a comprehensive survey of
theoretical ecology. Relatively few topics are covered, but those that are covered
are treated in considerable depth. A text with comprehensive coverage would
have to be either impracticably immense or impenetrably condensed. My aim,
instead, is to give students a deep enough understanding of the topics that are
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discussed to enable them to pick up other areas of interest (including new de-
velopments) from the primary literature.

I have not discussed data analytic techniques such as mark-recapture and
so on, but the book of Krebs (1989) is dedicated to this topic. I have also not
treated the ecology of infectious diseases, except for one example, as this topic
has been cogently reviewed by Anderson (1981) and Anderson and May (1985).
Similarly, Clark (1976) is a superb introduction to management problems. The
volume edited by May (1981c) covers a number of other topics that I have not
touched upon, and May’s volume will be accessible to the student of this book.

I have written for advanced undergraduates or graduate students. In par-
ticular, I presuppose one or two years of ecology and a year of calculus. Thus,
for example, I start out by simply writing down the logistic equation, assuming
it is familiar to the student. There is an appendix that discusses certain mathe-
matical topics beyond first-year calculus, which are used in isolated places in
the main text. These places are all flagged, and the book is written so that the
reader who does not wish to go quite so deeply into mathematics can skip over
them (and the appendix) and still follow the gist of the argument.

As well, quite a lot of mathematical material—indispensable, to my mind—
is developed within the main text. While this does to some extent interrupt the
flow of biological ideas, I did not want to segregate the mathematics so much
that the student would fall prey to the temptation to just “take my word for it.”
I believe students will find they can view ecology from a theoretical perspective
much more tellingly if they really understand the theory for themselves and
don’t have to view theoretical results as Pronouncements. The basic spirit of the
book is that advocated by Albert Einstein: “Everything should be made as simple
as possible—but not simpler.”

I think it is vital that we develop a common understanding in ecology as
to what constitutes a scientific explanation (within the particular science of ecol-
ogy), and what are valid protocols for research that aims at such explanation.
To get the student thinking along these lines, I have explicated some method-
ological basics, especially pertaining to pluralistic (introductory paragraphs to
Chapter 6, and Section 6.4) and probabilistic (Section 8.1.2) explanations.

Because the variability from one institution to another in the students’
preparation for this kind of course is greater than in the more standard biological
fare, it is impossible to estimate how much of the book can be covered in a given
time. The book probably contains enough material for a one-year course at most
universities. Parts One and Two form an integrated unit that must be taken in
the order given. Part Three is essentially independent. Thus a one-semester (or,
with supplementation, possibly a year) course in theoretical population and
community ecology could be based on Parts One and Two, or a one-semester
course in life-history theory could use Part Three. The minimum that should
be covered in Parts One and Two is Chapters 1 through 6. Chapters 7 and 8
could be included if time permits, or left for students to read on their own. (Or,
one might want to cover Chapter 9 instead.) The minimum that would constitute
a reasonable treatment of life-history theory is Chapters 9, 10, and 13.
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To mention one further element of flexibility: some instructors might find
that their students are happier to start with Part Three (which is mathematically
simpler), then go on to Parts One and Two. I have put Part Three at the end
because I feel that this topic is less well founded than the others, because of the
pervasive use in it of problematical optimization arguments. The difficulties in
the optimization program are discussed at the very beginning of Part Three.

Pictorial material is dealt with here in a somewhat unusual way, which I
should perhaps explain. The book contains figures that are placed on the page
and labeled in the usual way, and “sketches” that are integrated directly into
the text. The hope is that treating the sketches in this way will aid in the flow of
the argument. Basically, the sketches are things that would be drawn on the
blackboard in a lecture; they are virtually an integral part of the text, and are so
presented here.

The book includes exercises. These are almost entirely mathematical cal-
culations. Most of them fill in gaps in the text and are included in the text at
the appropriate places. Additional exercises, which extend the text, are given at
the ends of chapters.

Some students complain that a lot of the exercises, especially among those
that fill in gaps, are boring and routine. In some cases this is because the exercises
in question really are too easy for the student. Sometimes, though, the student
Just does not want to plod through the preliminaries. The painful truth is that
you must learn to walk before you can dance; you have to master scales and
arpeggios before you are ready to attempt sonatas.

The student who wants real mastery of this material should do all the
exercises; the instructor has, of course, the option of setting a mandatory standard
short of this, or indeed of adding more exercises. I have even taught the course
with no assigned exercises. These students wrote nonmathematical term papers
that applied the ideas developed in the course to systems that they were familiar
with or particularly interested in.

Some of the exercises are computer projects, and here, again, there will be
a lot of variability from one institution to another in the appropriateness of such
exercises.

I should make one more point about the exercises that fill in gaps in the
text. In mathematical writing, it is quite common to sketch how a calculation
or proof is done, without giving all the details. Serious readers will often fill in
these details as they go along (at least, on second or third reading), and this is
certainly to be recommended to students. By calling attention to these gaps in
the form of exercises at the places where gaps occur, I hope to train the student
to spot places where an argument needs to be rounded out.

Ultimately, the idea of writing this book originated with Hans Burla, who
invited me to lecture on theoretical ecology in Ziirich and suggested writing a
Scriptum for the course of lectures. As well, I have spent many happy hours
discussing biology with Hans. Several generations of students, both in Ziirich
and in Guelph, forced me to think clearly with their questions, kept me honest
with their skepticism, and encouraged me with their interest. I wish I could name
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them all, but I do need to mention two excellent students, Dominique Anfossi
and Susan Glenn, who provided detailed criticisms of late versions of the
lecture notes.

I am very grateful to Ted Case, Joel Cohen, Jim Drake, Mike Gilpin,
Robert Holt, Dave Lavigne, Sandy Middleton, Bob May, Craig Pease, Georg
Ribi, John Roff, and David Tilman for their comments on the manuscript or
parts thereof. Special thanks to Don DeAngelis for his very thorough criticisms.
And my very special thanks to family, friends, and colleagues for their patience
and encouragement.

Peter Yodzis
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Chapter 1

Introduction

Science is an attempt to understand the world around us. In part, it proceeds
by very carefully, very precisely, very thoroughly describing what we observe.
But, while description is the ultimate foundation of science, it is not enough.
For our world—indeed, almost any given small part of it—is very, very (some
would say boundlessly) complex and diverse. Eventually description, in itself,
overwhelms.

So scientists seek patterns in the data. One way of doing this is to scrutinize
the data themselves, sometimes utilizing sophisticated statistical methods. This
kind of analysis, too, is an important part of science, but it is still not enough.
How do we know what kind of pattern to look for? Could it be that some patterns
in the data are too subtle for ad hoc scrutiny to detect?

Moreover, even when we do see pattern, we may wonder what causes it,
whether we can explain it in terms of some underlying principles or processes.
The contemplation of underlying causes, by accounting for discerned patterns
in the data, may please our desire to understand. Furthermore, it may suggest
to us new kinds of pattern to look for in the data (and new kinds of data to
gather in the first place). This is the scientific activity that we call theory.

Theory proceeds by making assumptions about how things work, assump-
tions that simplify the vast complexity of nature by abstracting out certain features
that the theorist regards as essential. It then deduces the consequences of these
assumptions—and comparing these consequences with observed data is a way
of looking for pattern in the data.

Ecological theory has over the past few decades made very extensive use
of mathematical models, and since this sort of approach is perhaps a bit unfamiliar
to many biologists, I am going to start out with a few general remarks about
mathematical models.
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1.1 MODELS

First, what is a model? Webster’s defines it as “a hypothetical or stylized rep-
resentation,” and I think this is an excellent characterization of the sense in
which the word is used in science. The purpose of a model is not to provide a
literal description of some system, but to provide a conceptualization (represen-
tation) of the system and its workings, in terms of which one can think about
the system and understand something of its behavior. Any model will inevitably
be incomplete and even false in some respects, but in discovering these defects
we often learn new things about the system—and come up with new and better
models.

A common misconception about mathematical models is that it is char-
acteristic of them to very much simplify the actuality being investigated. It is
true that mathematical models simplify very much. But this is not characteristic
of mathematical models—it is characteristic of any attempt to comprehend the
world. For instance, even decades of intensive empirical study of an ecosystem
leave us with a simplified view of the system. The real issue is: How much
simplification, and what kind of simplification, is it sensible for us to make?
Right now, we in ecology are still very far from being able to address this issue
conclusively.

Models can be expressed in several different ways: verbally, in graphs or
diagrams, or mathematically. In current theoretical ecology, while verbal, graph-
ical, and diagrammatic models are often used in preliminary formulations of
ideas, it is seldom long before the train of thought finds expression as a mathe-
matical model.

There are two reasons for this prevalence of mathematical models in ecol-
ogy. First, the systems being studied in ecology tend to be very complex, and
mathematics is ideally suited to the expression of complex relationships in a
form that makes it relatively easy to work out the consequences of these rela-
tionships. In principle, one could attempt to do all the same reasonings verbally,
or in some extraordinarily complicated diagram, but in practice this would be
far too mind-bogglingly confusing.

Second, mathematics is very exact. It forces one to (try to) say exactly
what one’s ideas are, and it enables one to find out exact/y what their consequences
are. Mathematics is not the only form of clear thinking, but it is the most powerful,
and it imposes a certain discipline which helps to keep one from sliding into
fuzzy thinking.

It is not inconceivable that the phenomena of ecology are just not amenable
to such a rigorous approach. Theoretical ecology, while enjoying a measure of
success, has yet fully to prove itself. But the promise is too great to be ignored.
The scientific spirit—to say nothing of the urgency of the environmental crisis—
demands that we explore this promise to the fullest.

One should be aware that two quite different kinds of models are commonly
used in ecology (and elsewhere). C. S. Holling (1966) uses the terminology
“tactical” and “strategic” to distinguish the two kinds of models.

A tactical model in Holling’s sense is a very detailed model of a very
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specific system. Such a model is often referred to as a ““simulation” because its
aim is to mimic as closely as possible the detailed actual behavior of some par-
ticular system. Because it attempts a highly detailed and realistic representation,
such a model is immensely complicated and can be handled only on a substantial
computer.

The tactical approach probably seems the more natural to many biologists,
and vyet it is, I think, fair to say that this approach has contributed little to
ecological theory, in comparison with the strategic approach. This is because
tactical models are so terribly specific that it is difficult to extract general insights
from them; and they are so complicated that calculations with them are cum-
bersome and not at all transparent. Nevertheless, these models can be vital tools
when one’s goals are sufficiently concrete and specific, and one has at one’s
disposal the extensive resources that are required to build a reliable tactical model.
A number of excellent books with a tactical orientation are available (for instance,
Watt 1968, Patten 1971, Hall and Day 1977).

The strategic approach is a little harder to describe. It will be my approach
throughout this book, so you will become familiar with it anyhow if you just
read on. The basic idea of this viewpoint is to sacrifice detail for generality. One
tries to build relatively simple models that, while not taking into account every
detail of any one system, do capture the essence of many systems. Such an
approach lends itself very well to the perception and formulation of general
insights, largely because it is predicated on the assumption that such insights
can be had!

It is, however (as Holling himself is at pains to emphasize), far too crude
to draw an absolute binary distinction: tactical or strategic. It makes more sense
to think of each model as lying somewhere in a continuum of approaches, with
“tactical” and ‘‘strategic” as the two extremes (or, more precisely, as the two
“directions” in this one-dimensional continuum). One can, as we shall see, add
or subtract bits of detail to or from a model in order to strike the right balance
between detail and generality, between thoroughness and workability.

1.2 ON THE RELATION BETWEEN THEORY
AND OBSERVATION

I am not going to discuss much data in this book. I am just going to discuss
theory for the most part, and will leave it to each reader to fill in examples from
his or her other studies in biology and ecology, and experience of particular
organismes.

When I do discuss data, it will be to illustrate the relation between theory
and observation. This is a very important relationship; indeed it is crucial to the
scientific enterprise. I would like to suggest to you at this point a couple of vague
generalities to keep in mind as we go along.

Most observers develop hypotheses about their systems and try to test these
hypotheses. Often they start work on a system with some hypothesis already in
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mind. Now, one function of theory is to sharpen hypotheses. This process of
sharpening hypotheses can take two forms: it can involve making the hypotheses
themselves more precise, or it can involve pinpointing just exactly which mea-
surements need to be made in order to test the hypotheses (perhaps most effi-
ciently in some sense). Or it can involve both these aspects.

But there is another, more subtle and marvelous, function of theory. As I
hope you will see in the rest of this book, a theory has a sort of life of its own,
a course of development that flows from its inner logic. And in the course of
this process the theory will often generate new hypotheses, which, often enough,
can be tested in the field or lab.



PART ONE

THE GROWTH OF SINGLE
POPULATIONS

The growth of a population depends upon many factors. Some of these are
abiotic characteristics of the environment, some are characteristics of the pop-
ulation itself, and some arise from interactions with other populations. We begin
our study of ecological theory by considering the growth of a population for
which interactions with other populations are negligible.

There are, to be sure, precious few, if any, populations in nature for which
interactions with other populations are completely and utterly absent. But it is
often enough a reasonable first approximation to neglect interspecific interactions.
Moreover, we shall make the acquaintance in this relatively simple setting of a
host of important concepts whose usefulness extends far beyond the single-species
situation.

I will make some additional simplifying assumptions in this part. I will
assume unless otherwise stated that all abiotic factors remain constant (no sea-
sonal or random environmental fluctuations). Environmental fluctuations are
discussed in Sections 2.4 and 3.6. I will also neglect age structure within our
populations (until Part Three, where I discuss age structure), as well as all phe-
notypic variation. I will assume further that we are dealing with populations that
lack any spatial structure (until Section 5.4). In short, at first we consider pop-
ulations that are homogeneous in every respect: the state of such a population
will be specified by a single function of time: the density (number or biomass
per unit area or volume) N.

These are a lot of simplifying assumptions, but they will enable us to get
started. As indicated in the preceding paragraph, we later drop some of these
simplifications. But even at our present level of simplicity, we will gain some
fascinating insights from these models.

Under certain circumstances (explicated in Section 2.5) it is appropriate
to view population growth as a continuous process in continuous time (Chapter

5



