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Editors Prefface

This textbook fills a long-standing gap. The beginning graduate student
finds it hard to learn the basic material on differentiable manifolds. All the
books he is referred to give a cursory treatment and quickly move on to more
specialized topics. For this reason, Professor Warner’s book is especially
welcome. Here is a clear, detailed, and careful development of the funda-
mental facts on manifold theory and Lie groups. Numerous problems extend
the theory and help the student master the subject. An added bonus is the
sheaf-theoretic proof of the de Rham theorem and an elementary proof of
the Hodge theorem. As far as I know, the latter proof is the only one in the
literature easily accessible to the novice in analysis.

1. M. Singer



Prefface

This book provides the necessary foundation for students interested in any
of the diverse areas of mathematics which require the notion of a differentiable
manifold. Itis designed as a beginning graduate-level textbook and presumes
a good undergraduate training in algebra and analysis plus some knowledge
of point set topology, covering spaces, and the fundamental group. It is
also intended for use as a reference book since it includes a number of items
which are difficult to ferret out of the literature, in particular, thecompleteand
self-contained proofs of the fundamental theorems of Hodge and de Rham.

The core material is contained in Chapters 1, 2, and 4. This includes
differentiable manifolds, tangent vectors, submanifolds, implicit function
theorems, vector fields, distributions and the Frobenius theorem, differential
forms, integration, Stokes’ theorem, and de Rham cohomology.

Chapter 3 treats the foundations of Lie group theory, including the
relationship between Lie groups and their Lie algebras, the exponential
map, the adjoint representation, and the closed subgroup theorem. Many
examples are given, and many properties of the classical groups are derived.
The chapter concludes with a discussion of homogeneous manifolds. The
standard reference for Lie group theory for over two decades has been
Chevalley’s Theory of Lie Groups, to which I am greatly indebted.

For the de Rham theorem, which is the main goal of Chapter 5, axiomatic
sheaf cohomology theory is developed. In addition to a proof of the strong
form of the de Rham theorem—the de Rham homomorphism given by
integration is a ring isomorphism from the de Rham cohomology ring to the
differentiable singular cohomology ring—it is proved that there are canonical
isomorphisms of all the classical cohomology theories on manifolds. The
pertinent parts of all these theories are developed in the text. The approach
which T have followed for axiomatic sheaf cohomology is due to H. Cartan,
who gave an exposition in his Séminaire 1950/1951.

For the Hodge theorem, a complete treatment of the local theory of
elliptic operators is presented in Chapter 6, using Fourier series as the basic
tool. Only a slight acquaintance with Hilbert spaces is presumed.
I wish to thank Jerry Kazdan, who spent a large portion of the
summer of 1969 educating me to the whys and wherefores of inequalities
and who provided considerable assistance with the preparation of this chapter.
I also benefited from notes on lectures by J. J. Kohn and Stephen Andrea,
from several papers of Louis Nirenberg, and from Partial Differential



Eguations by Bers, John, and Schechter, which the reader might wish to
consult for further references to the literature.

At the end of each chapter is a set of exercises. These are an integral
part of the text. Often where a claim in a chapter has been left to the reader,
there is a reminder in the Exercises that the reader should provide a proof
of the claim. Some exercises are routine and test general understanding
of the chapter. Many present significant extensions of the text. In some
cases the exercises contain major theorems. Two notable examples are
properties of the eigenfunctions of the Laplacian and the Peter-Weyl theorem,
which are developed in the Exercises for Chapter 6. Hints are provided for
many of the difficult exercises.

There are a few notable omissions in the text. I have not treated complex
manifolds, although the sheaf theory developed in Chapter 5 will provide
the reader with one of the basic tools for the study of complex manifolds.
Neither have I treated infinite dimensional manifolds, for which I refer the
reader to Lang’s Introduction to Differentiable Manifolds, nor Sard’s theorem
and imbedding theorems, which the reader can find in Sternberg’s Lectures
on Differential Geometry.

Several possible courses can be based on this text. Typical one-semester
courses would cover the core material of Chapters 1, 2, and 4, and then
either Chapter 3 or 5 or 6, depending on the interests of the class. The
entire text can be covered in a one-year course.

Students who wish to continue with further study in differential geometry
should consult such advanced texts as Differential Geometry and Symmetric
Spaces by Helgason, Geometry of Manifolds by Bishop and Crittenden, and
Foundations of Differential Geometry (2 vols.) by Kobayashi and Nomizu.

I am happy to express my gratitude to Professor I. M. Singer, from whom
I learned much of the material in this book and whose courses have always
generated a great excitement and enthusiasm for the subject.

Many people generously devoted considerable time and effort to reading
early versions of the manuscript and making many corrections and helpful
suggestions. I particularly wish to thank Manfredo do Carmo, Jerry Kazdan.
Stuart Newberger, Marc Rieffel, John Thorpe, Nolan Wallach, Hung-Hsi Wu,
and the students in my classes at the University of California at Berkeley and
at the University of Pennsylvania. My special thanks to Jeanne Robinson,
Marian Griffiths, and Mary Ann Hipple for their excellent job of typing, and
to Nat Weintraub of Scott, Foresman and Company for his cooperation and
excellent guidance and assistance in the final preparation of the manuscript.

Frank Warner
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MIANIFOILIDS



After establishing some notational conventions which will be used throughout
the book, we will begin with the notion of a differentiable manifold. These
are spaces which are locally like Euclidean space and which have enough
structure so that the basic concepts of calculus can be carried over. In this
first chapter we shall primarily be concerned with the analogs and implications
for manifolds of the fundamental theorems of differential calculus. Later,
in Chapter 4, we shall consider the theory of integration on manifolds.

From the notion of directional derivative in Euclidean space we will
obtain the notion of a tangent vector to a differentiable manifold. We will
study mappings between manifolds and the effect that mappings have on
tangent vectors. We will investigate the implications for mappings of
manifolds of the classical inverse and implicit function theorems. We will
see that the fundamental existence and uniqueness theorems for ordinary
differential equations translate into existence and uniqueness statements for
integral curves of vector fields. The chapter closes with the Frobenius
theorem, which pertains to the existence and uniqueness of integral manifolds
of involutive distributions on manifolds.

PRELIMINARIES

1.1 Some Basic Notation and Terminology  Throughout this text we
will describe sets either by listings of their elements, for example

{al pOES ,an}s
or by expressions of the form
{x: P},

which denote the set of all x satisfying property P. The expression a € 4
means that a is an element of the set 4. If a set A is a subset of a set B (that
is, a € B whenever a € A), we writte A < B. If A < B and B < A, then 4
equals B, denoted 4 = B. The negations of €, < and = are denoted by ¢,
¢, and > respectively. A set A4 is a proper subset of Bif A < B but 4 # B.

2



Preliminaries 3

We will denote the empty set by @. We will often denote a collection
{U,: « € 4} of sets U, indexed by the set 4 simply by {U,} if explicit mention
of the index set is not necessary. The union of the sets in the collection

{U,: «€ 4} will be denoted | U, or simply |J U,. Similarly, their
acd
intersection will be denoted ) U, or simply N U, .
LTV |

U U, = {a: a belongs to some U,}.
acd

N U, = {a: a belongs to every U,}.
acd

The expression f: A — B means that fis a mapping of the set 4 into the
set B. When describing a mapping by describing its effect on individual
elements, we use the special arrow +; thus “the mapping m — f(m) of 4
into B” means that fis a mapping of the set 4 into the set B taking the element
m of A into the element f (m) of B. If U < A, then f | U denotes the restriction
of fto U, and f(U) = {b e B: f(a) = b for some ae U}. If C < B, then
fUC)={aecA:f(a) e C}. A mapping f is one-to-one (also denoted1:1),
or injective, if whenever a and b are distinct elements of A4, then f(a) % f(b).
A mapping fis onto, or surjective, if f(A) = B.

If f: A— B and g: C — D, then the composition g o f is the map

gefiffBNC)—D
defined by gof(a) = g(f(a)) for every aef~(B N C). For notational
convenience, we shall not exclude the case in which f~1(BNC)= .
That is, given any two mappings f'and g, we shall consider their composition
g o f as being defined, with the understanding that the domain of g o f may
well be the empty set.

The cartesian product A X B of two sets A and B is the set of all pairs
(a, b) of points ae A4 and beB. If f: A—C and g: B— D, then the
cartesian product f X g of the maps f and g is the map (a, b) — (f(a), g(b))
of 4 X Binto C X D.

We shall denote the identity map on any set by “id.”

A diagram of maps such as

A

B
g
is called commutative if g o f = h.
We shall always use the term function to mean a mapping into the real
numbers.



4  Manifolds

Let d > 1 be an integer, and let
R¢ = {a:a = (a,,...,a,;) where the a; are real numbers}.

Then R is the d-dimensional Euclidean space. In the case d = 1, we denote
the real line R simply by R. The origin (0, ..., 0) in Euclidean space of
any dimension will be denoted 0. The notations [a,b] and (a,b) denote as
usual the intervals of the real line a <7< b and a < ¢t < b respectively.
The function r;: R¢ — [R defined by

ri(a) =a;,

where a = (a, , . . ., a;) € RY, is called the ith (canonical) coordinate function
on R?. The canonical coordinate function r; on R will be denoted simply
by r. Thus r(a) = a for each a € R. If f: X — R?, then we let

fi=riof,

where f; is called the ith component function of f.
If f: R — R and 7 € [R, then we denote the derivative of f at t by

i LD =IO

” h—»o h

‘ (f) =

dr

IfffR*—>R,ifl<i<n and if t = (t,,...,t,) € R", then we denote
the partial derivative of f with respect to r; at t by

15+ + =5 bi_15 84 hsi+1""’n_
ar f) = of mf(t tiasti +hit L) f(t)-

Pl arz ¢ h—'O h

If p € R4, then B,(r) will denote the open ball of radius r about p. The
open ball of radius r about the origin will be denoted simply by B(r). C(r)
will denote the open cube with sides of length 2r about the origin in R4
That is,

Cr)={(ay,...,a;) € R |a,| < r for all i}.
We shall use C to denote the complex number field and C” to denote
complex n-space,
Cr={(zy,...,2,):z;€Cforl <i<n}

Unless we indicate otherwise, we shall always use the term neighborhood
in the sense of open neighborhood. If A is a subset of a topological space,
its closure will be denoted by 4. If ¢ is a function on a topological space X,
the support of ¢ is the subset of X defined by

supp ¢ = ¢ (R — {0}).

We use the Kronecker index
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If o = (o ,..., ) is a d-tuple of non-negative integers, then we set
[x] = Z 0y
ol = o logl eyl
and
0* ot
G P P LT
If « = (0,...,0), then we let
aa
e fH=r.

DIFFERENTIABLE MANIFOLDS

1.2 Definitions Let U < [R? be open, and let f: U — [R. We say that
f is differentiable of class C* on U (or simply that f is C*), for k a non-
negative integer, if the partial derivatives 0%f/or* exist and are continuous on U
for [«] < k. In particular, fis C° if f is continuous. If f: U — R™, then f is
differentiable of class C* if each of the component functions f; = r; o f'is C*.
We say that f'is C* if it is C* for all k > 0.

1.3 Definitions A locally Euclidean space M of dimension d is a
Hausdorff topological space M for which each point has a neighborhood
homeomorphic to an open subset of Euclidean space [R? If ¢ is a homeo-
morphism of a connected open set U < M onto an open subset of R?,
o is called a coordinate map, the functions x; = r, o ¢ are called the coordinate
functions, and the pair (U,¢) (sometimes denoted by (U, x,, ... ,xd)) is
called a coordinate system. A coordinate system (U, ¢) is called a cubic
coordinate system if ¢(U) is an open cube about the origin in R%. If me U
and ¢(m) = 0, then the coordinate system is said to be centered at m.

1.4 Definitions A differentiable structure & of class C* (1 < k < )
on a locally Euclidean space M is a collection of coordinate systems
{(U,, @,): o € A} satisfying the following three properties:

@ UU,=M

acd
(b) @,0 ¢y tis C*forall, B € A.
(c) The collection % is maximal with respect to (b); that is, if

(U,9) is a coordinate system such that ¢ o ¢,7* and ¢, o ¢~ are
C* for all « € 4, then (U,¢) € #.
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If #,={(U,,p,): x€ A} is any collection of coordinate systems
satisfying properties (a) and (b), then there is a unique differentiable struc-
ture & containing &,. Namely, let

F = {(U,9): 9o ¢, tand ¢, ¢~ are C* for all ¢, € F o}.

Then & contains &, clearly satisfies (a), and it is easily checked that &
satisfies (b). Now # is maximal by construction, and so & is a differentiable
structure containing &% ,. Clearly # is the unique such structure.

We mention two other fundamental types of differentiable structures on
locally Euclidean spaces, types that we shall not treat in this text, namely,
the structure of class C® and the complex analytic structure. For a
differentiable structure of class C*, one requires that the compositions in
(b) are locally given by convergent power series. For a complex analytic
structure on a 2d-dimensional locally Euclidean space, one requires that the
coordinate systems have range in complex d-space C? and overlap holo-
morphically.

A d-dimensional differentiable manifold of class C* (similarly C* or complex
analytic) is a pair (M,#) consisting of a d-dimensional, second countable,
locally Euclidean space M together with a differentiable structure & of
class C*. We shall usually denote the differentiable manifold (M,%) simply
by M, with the understanding that when we speak of the “differentiable
manifold M we are considering the locally Euclidean space M with some
given differentiable structure . Our attention will be restricted solely to
the case of class C*, so by differentiable we will always mean differentiable
of class C*. We also use the terminology smooth to indicate differentiability
of class C*. We often refer to differentiable manifolds simply as manifolds,
with differentiability of class C* always implicitly assumed. A manifold
can be viewed as a triple consisting of an underlying point set, a second
countable locally Euclidean topology for this set, and a differentiable
structure. If X is a set, by a manifold structure on X we shall mean a choice
of both a second countable locally Euclidean topology for X and a differ-
entiable structure.

Even though we shall restrict our attention to the C* case, many of our
theorems do, however, have C¥ versions for k < oo, which are essentially
no more complicated than the ones we shall obtain. They simply require that
one keep track of degrees of differentiability, for differentiating a C* function
may only yield a function of class C¥1if 1 < k < co.

Unless we indicate otherwise, we shall always use M and N to denote
differentiable manifolds, and M¢ will indicate that M is a manifold of
dimension d.

1.5 Examples

(a) The standard differentiable structure on Euclidean space R¢ is obtained
by taking # to be the maximal collection (with respect to 1.4(b))
containing ([R%,), where i: R? — [R? is the identity map.



(b)

©

)

(e)

)

(®
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Let V' be a finite dimensional real vector space. Then V has a natural
manifold structure. Indeed, if {e,} is a basis of V, then the elements of
the dual basis {r;} are the coordinate functions of a global coordinate
system on V. Such a global coordinate system uniquely determines a
differentiabl> structure % on V. This differentiable structure is inde-
pendent of the choice of basis, since different bases give C* overlapping
coordinate systems. In fact, the change of coordinates is given simply
by a constant non-singular matrix.

Complex n-space Cn is a real 2n-dimensional vector space, and so,
by Example (b), has a natural structure as a 2n-dimensional real
manifold. If {e;} is the canonical complex basis in which e; is the
n-tuple consisting of zeros except for a 1 in the ith spot, then

{es,....e,, V—ley, ..., V—le,}

is a real basis for C*, and its dual basis is the canonical global
coordinate system on C™".
The d-sphere is the set

d+1
S = {aeR¥1: Y g2 =1}
=1

Let n=(0,...,0,1) and s = (0,...,0, —1). Then the standard
differentiable structure on S* is obtained by taking % to be the maximal
collection containing (S? — n, p,) and (S% — s, p,), where p, and p,
are stereographic projections from » and s respectively.

An open subset U of a differentiable manifold (M,F ;,) is itself a
differentiable manifold with differentiable structure

Fu={U,NU, ¢ | U, NU): (U,,9) €EF p}-

Unless specified otherwise, open subsets of differentiable manifolds will
always be given this natural differentiable structure.

The general linear group Gl(n,R) is the set of all » X n non-singular
real matrices. If we identify in the obvious way the points of R"* with
n X n real matrices, then the determinant becomes a continuous func-
tion on R™. Gl(n,R) receives a manifold structure as the open subset
of R"* where the determinant function does not vanish.

Product manifolds. Let (M, ,#,) and (M, ,#,) be differentiable
manifolds of dimensions d; and d, respectively. Then M; X M,
becomes a differentiable manifold of dimension d; + d, , with differen-
tiable structure .# the maximal collection containing

{(Upy X Vi, 0 X pp: U, X Vg —

Pdl X ['Rdz): (Ua 9<Pa) E'g‘;l ’ (Va ﬂPp) E'g“—&}'
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1.6 Definitions Let U < M be open. We say that f: U— R is a
C* function on U (denoted fe C*(U)) if fo ¢~ is C* for each coordinate
map ¢ on M. A continuous map p: M — N is said to be differentiable
of class C* (denoted y € C*(M,N) or simply y € C*) if g o y is a C* function
on y~!(domain of g) for all C* functions g defined on open sets in N.
Equivalently, the continuous map y is C* if and only if ¢ oy o 771is C* for
each coordinate map = on M and ¢ on N.

Clearly the composition of two differentiable maps is again differentiable.
Observe that a mapping w: M — N is C” if and only if for each m € M there
exists an open neighborhood U of m such that y | U is C*.

THE SECOND AXIOM OF COUNTABILITY

The second axiom of countability has many consequences for manifolds.
Among them, manifolds are normal, metrizable, and paracompact. Para-
compactness implies the existence of partitions of unity, an extremely
useful tool for piecing together global functions and structures out of local
ones, and conversely for representing global structures as locally finite
sums of local ones. After giving the necessary definitions, we shall give a
simple direct proof of paracompactness for manifolds, and shall then derive
the existence of partitions of unity. It is evident that manifolds are regular
topological spaces and their normality follows easily from this and the
paracompactness. We shall leave the proof that manifolds are normal as an
exercise. For the fact that manifolds are metrizable, see [13].

1.7 Definitions A collection {U,} of subsets of M is a cover of a set
We Mif We JU,. Itis an open cover if each U, is open. A sub-
collection of the U, which still covers is called a subcover. A refinement
{V}} of the cover {U,} is a cover such that for each § there is an o such that
Vy< U,. A collection {4,} of subsets of M is locally finite if whenever
m € M there exists a neighborhood W, of m such that W,, N 4, # & for
only finitely many «. A topological space is paracompact if every open cover
has an open locally finite refinement.

1.8 Definition A partition of unity on M is a collection {¢;: iel} of
C? functions on M such that

(a) The collection of supports {supp ¢;: i € I} is locally finite.
(b) X oip)=1forallpeM, and ¢,(p) >0forallpe M andiel
iel

A partition of unity {¢,: i € I} is subordinate to the cover {U,: « € 4} if for
each i there exists an « such that supp ¢, = U,. We say that it is subordinate
to the cover {U;: i €1} with the same index set as the partition of unity if
supp ¢; < U, for each i € I.



