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Preface

Process control has become increasingly important in
the process industries as a consequence of global com-
petition, rapidly changing economic conditions, faster
product development, and more stringent environmen-
tal and safety regulations. Process control and its allied
fields of process modeling and optimization are critical
in the development of more flexible and more complex
processes for manufacturing high-value-added prod-
ucts. Furthermore, the rapidly declining cost of digital
devices and increased computer speed (doubling every
18 months, according to Moore’s Law) have enabled
high-performance measurement and control systems to
become an essential part of industrial plants.

It is clear that the scope and importance of process
control technology will continue to expand during the
21st century. Consequently, chemical engineers need to
master this subject in order to be able to design and oper-
ate modern plants. The concepts of dynamics, feedback,
and stability are also important for understanding many
complex systems of interest to chemical engineers, such as
in bioengineering and advanced materials. An introduc-
tory course should provide an appropriate balance of
process control theory and practice. In particular, the
course should emphasize dynamic behavior, physical and
empirical modeling, computer simulation, measurement
and control technology, basic control concepts, and ad-
vanced control strategies. We have organized this book
so that the instructor can cover the basic material while
having the flexibility to include advanced topics. The
textbook provides the basis for 10 to 30 weeks of instruc-
tion for a single course or a sequence of courses at either
the undergraduate or first-year graduate levels. It is also
suitable for self-study by engineers in industry. The book
is divided into reasonably short chapters to make it more
readable and modular. This organization allows some
chapters to be omitted without a loss of continuity.

The mathematical level of the book is oriented to-
ward a junior or senor student in chemical engineering
who has taken at least one course in differential equa-
tions. Additional mathematical tools required for the
analysis of control systems are introduced as needed.

We emphasize process control techniques that are used
in practice and provide detailed mathematical analysis
only when it is essential for understanding the material.
Key theoretical concepts are illustrated with numerous
examples and simulations.

The textbook material has evolved at the University
of California, Santa Barbara, and the University of
Texas at Austin over the past 40 years. The first edition
(SEM1) was published in 1989, adopted by over 80 uni-
versities worldwide, and translated into Korean and
Japanese. In the second edition (SEM2, 2004), we added
new chapters on the important topics of process moni-
toring (Chapter 21), batch process control (Chapter 22),
and plantwide control (Chapters 23 and 24). Even with
the new chapters, the length of the second edition was
about the same as SEMI1. Interactive computer software
based on MATLAB® and Simulink® software was
extensively used in examples and exercises. The second
edition was translated into Chinese in 2004.

For the third edition (SEMD3), we are very pleased
to have added a fourth co-author, Professor Frank
Doyle (UCSB), and we have made major changes that
reflect the evolving field of chemical and biological en-
gineering, as well as the practice of process control,
which are described in the following.

The book is divided into five parts. Part I provides an
introduction to process control and an in-depth discussion
of process modeling. Control system design and analysis
increasingly rely on the availability of a process model.
Consequently, the third edition includes additional mater-
ial on process modeling based on first principles, such as
conservation equations and thermodynamics. Exercises
have been added to several chapters based on
MATLAB® simulations of two physical models, a distilla-
tion column and a furnace. These simulations are based
on the book, Process Control Modules, by Frank Doyle,
Ed Gatzke, and Bob Parker. Both the book and the
MATLAB simulations are available on the book Web site
(www.wiley.com/go/global/seborg). National Instruments
has provided multimedia modules for a number of exam-
ples in the book based on their LabVIEW ™ software.
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Part II (Chapters 3 through 7) is concerned with the
analysis of the dynamic (unsteady-state) behavior of
processes. We still rely on the use of Laplace transforms
and transfer functions, to characterize the dynamic
behavior of linear systems. However, we have kept ana-
lytical methods involving transforms at a minimum and
prefer the use of computer simulation to determine
dynamic responses. In addition, the important topics of
empirical models and their development from plant
data are presented.

Part III (Chapters 8 through 15) addresses the funda-
mental concepts of feedback and feedforward control.
The topics include an overview of the process instrumen-
tation (Chapter 9) and control hardware and software
that are necessary to implement process control (Chapter
8 and Appendix A). Chapter 13 (new) presents the im-
portant topic of process control strategies at the unit
level, and additional material on process safety has been
added to Chapter 10. The design and analysis of feed-
back control systems still receive considerable attention,
with emphasis on industry-proven methods for controller
design, tuning, and troubleshooting. The frequency re-
sponse approach for open and closed-loop processes is
now combined into a single chapter (14), because of its
declining use in the process industries. Part III concludes
with a chapter on feedforward and ratio control.

Part IV (Chapters 16 through 22) is concerned with ad-
vanced process control techniques. The topics
include digital control, multivariable control, and en-
hancements of PID control, such as cascade control, se-
lective control, and gain scheduling. Up-to-date chapters
on real-time optimization and model predictive control
emphasize the significant impact these powerful tech-
niques have had on industrial practice. Other chapters
consider process monitoring and batch process control.
The two plantwide control chapters that were introduced
in SEM2 have been moved to the book Web site, as Ap-
pendices G and H. We have replaced this material with
two new chapters on biosystems control, principally au-
thored by our recently added fourth author, Frank Doyle.
Part V (new Chapters 23 and 24) covers the application
of process control in biotechnology and biomedical sys-
tems, and introduces basic ideas in systems biology.

The following resources for instructors (only) are pro-
vided: solutions manual, lecture slides, and figures from
the text. Instructors need to visit the book Web site to
register for a password to access the protected resources.
The book Web site is located at www.wiley.com/go/
global/seborg.
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Chapter 1

Introduction to Process Control

In recent years the performance requirements for
process plants have become increasingly difficult to sat-
isfy. Stronger competition, tougher environmental and
safety regulations, and rapidly changing economic con-
ditions have been key factors in tightening product
quality specifications. A further complication is that
modern plants have become more difficult to operate
because of the trend toward complex and highly inte-
grated processes. For such plants, it is difficult to pre-
vent disturbances from propagating from one unit to
other interconnected units.

In view of the increased emphasis placed on safe,
efficient plant operation, it is only natural that the subject
of process control has become increasingly important in
recent years. Without computer-based process control
systems it would be impossible to operate modern
plants safely and profitably while satisfying product
quality and environmental requirements. Thus, it is im-
portant for chemical engineers to have an understand-
ing of both the theory and practice of process control.

The two main subjects of this book are process
dynamics and process control. The term process dynamics
refers to unsteady-state (or transient) process behavior.
By contrast, most of the chemical engineering curricula
emphasize steady-state and equilibrium conditions in such
courses as material and energy balances, thermodynam-
ics, and transport phenomena. But process dynamics are
also very important. Transient operation occurs during
important situations such as start-ups and shutdowns,
unusual process disturbances, and planned transitions
from one product grade to another. Consequently, the
first part of this book is concerned with process dynamics.

The primary objective of process control is to maintain
a process at the desired operating conditions, safely and
efficiently, while satisfying environmental and product
quality requirements. The subject of process control is

concerned with how to achieve these goals. In large-
scale, integrated processing plants such as oil refineries or
ethylene plants, thousands of process variables such as
compositions, temperatures, and pressures are measured
and must be controlled. Fortunately, large numbers of
process variables (mainly flow rates) can usually be ma-
nipulated for this purpose. Feedback control systems
compare measurements with their desired values and
then adjust the manipulated variables accordingly.

As an introduction to the subject, we consider repre-
sentative process control problems in several industries.

1.1 REPRESENTATIVE PROCESS
CONTROL PROBLEMS

The foundation of process control is process under-
standing. Thus, we begin this section with a basic question:
what is a process? For our purposes, a brief definition is
appropriate:

Process: The conversion of feed materials to
products using chemical and physical operations. In
practice, the term process tends to be used for both
the processing operation and the processing
equipment.

Note that this definition applies to three types of com-
mon processes: continuous, batch, and semi-batch. Next,
we consider representative processes and briefly summa-
rize key control issues.

1.1.1 Continuous Processes

Four continuous processes are shown schematically in
Figure 1.1:

(a) Tubular heat exchanger. A process fluid on
the tube side is cooled by cooling water on the
shell side. Typically, the exit temperature of
the process fluid is controlled by manipulating

1
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Figure 1.1 Some typical continuous processes.

the cooling water flow rate. Variations in the
inlet temperatures and the process fluid flow
rate affect the heat exchanger operation. Con-
sequently, these variables are considered to be
disturbance variables.

(b) Continuous stirred-tank reactor (CSTR). If the
reaction is highly exothermic, it is necessary to
control the reactor temperature by manipulating
the flow rate of coolant in a jacket or cooling
coil. The feed conditions (composition, flow rate,
and temperature) can be manipulated variables
or disturbance variables.

(¢) Thermal cracking furnace. Crude oil is broken
down (“cracked”) into a number of lighter
petroleum fractions by the heat transferred
from a burning fuel/air mixture. The furnace
temperature and amount of excess air in the flue
gas can be controlled by manipulating the fuel
flow rate and the fuel/air ratio. The crude oil
composition and the heating quality of the fuel
are common disturbance variables.

(d) Multicomponent distillation column. Many dif-
ferent control objectives can be formulated for
distillation columns. For example, the distillate
composition can be controlled by adjusting the
reflux flow rate or the distillate flow rate. If
the composition cannot be measured on-line, a
tray temperature near the top of the column can
be controlled instead. If the feed stream is sup-
plied by an upstream process, the feed conditions
will be disturbance variables.

For each of these four examples, the process control
problem has been characterized by identifying three
important types of process variables.

e Controlled variables (CVs): The process variables
that are controlled. The desired value of a controlled
variable is referred to as its set point.

® Manipulated variables (MVs): The process variables
that can be adjusted in order to keep the controlled
variables at or near their set points. Typically, the
manipulated variables are flow rates.

e Disturbance variables (DVs): Process variables
that affect the controlled variables but cannot be
manipulated. Disturbances generally are related
to changes in the operating environment of the
process: for example, its feed conditions or ambi-
ent temperature. Some disturbance variables can
be measured on-line, but many cannot such as the
crude oil composition for Process (c), a thermal
cracking furnace.

The specification of CVs, MVs, and DVs is a critical step
in developing a control system. The selections should
be based on process knowledge, experience, and control
objectives.

1.1.2 Batch and Semi-Batch Processes

Batch and semi-batch processes are used in many
process industries, including microelectronics, pharma-
ceuticals, specialty chemicals, and fermentation. Batch
and semi-batch processes provide needed flexibility for
multiproduct plants, especially when products change
frequently and production quantities are small. Fig-
ure 1.2 shows four representative batch and semi-batch
processes:

(e) Batch or semi-batch reactor. An initial charge
of reactants is brought up to reaction conditions,
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Figure 1.2 Some typical processes whose operation is noncontinuous.

and the reactions are allowed to proceed for a
specified period of time or until a specified
conversion is obtained. Batch and semi-batch
reactors are used routinely in specialty chemical
plants, polymerization plants (where a reaction
byproduct typically is removed during the reac-
tion), and in pharmaceutical and other biopro-
cessing facilities (where a feed stream, e.g.,
glucose, is fed into the reactor during a portion
of the cycle to feed a living organism, such as a
yeast or protein). Typically, the reactor temper-
ature is controlled by manipulating a coolant
flow rate. The end-point (final) concentration of
the batch can be controlled by adjusting the de-
sired temperature, the flow of reactants (for
semi-batch operation), or the cycle time.

Batch digester in a pulp mill. Both continuous
and semi-batch digesters are used in paper man-
ufacturing to break down wood chips in order to
extract the cellulosic fibers. The end point of the
chemical reaction is indicated by the kappa
number, a measure of lignin content. It is con-
trolled to a desired value by adjusting the di-
gester temperature, pressure, and/or cycle time.

Plasma etcher in semiconductor processing. A
single wafer containing hundreds of printed cir-
cuits is subjected to a mixture of etching gases
under conditions suitable to establish and main-
tain a plasma (a high voltage applied at high
temperature and extremely low pressure). The
unwanted material on a layer of a microelec-
tronics circuit is selectively removed by chemical
reactions. The temperature, pressure, and flow
rates of etching gases to the reactor are con-

trolled by adjusting electrical heaters and control
valves.

(h) Kidney dialysis unit. This medical equipment is
used to remove waste products from the blood
of human patients whose own kidneys are failing
or have failed. The blood flow rate is maintained
by a pump, and “ambient conditions,” such as
temperature in the unit, are controlled by ad-
justing a flow rate. The dialysis is continued long
enough to reduce waste concentrations to accept-
able levels.

Next, we consider an illustrative example in more detail.

1.2 ILLUSTRATIVE EXAMPLE—A
BLENDING PROCESS

A simple blending process is used to introduce some
important issues in control system design. Blending op-
erations are commonly used in many industries to en-
sure that final products meet customer specifications.

A continuous, stirred-tank blending system is shown
in Fig. 1.3. The control objective is to blend the two
inlet streams to produce an outlet stream that has the
desired composition. Stream 1 is a mixture of two chem-
ical species, A and B. We assume that its mass flow rate
wy is constant, but the mass fraction of A, x;, varies with
time. Stream 2 consists of pure A and thus x, = 1. The
mass flow rate of Stream 2, w,, can be manipulated
using a control valve. The mass fraction of A in the exit
stream is denoted by x and the desired value (set point)
by x,,. Thus for this control problem, the controlled
variable is x, the manipulated variable is w,, and the dis-
turbance variable is x;.
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Figure 1.3 Stirred-tank blending system.

Next we consider two questions.

Design Question. If the nominal value of x| is Xy,
what nominal flow rate w, is required to produce the
desired outlet concentration, xg,?

To answer this question, we consider the steady-state
material balances:

Overall balance:

0=w +wp —w

(1-1)

Component A balance:

0= Wl-

-

+ Wyx; — wx (1-2)
The overbar over a symbol denotes its nominal steady-
state value, for example, the value used in the process
design. According to the process description, x; = 1
and X = x,. Solving Eq. 1-1 for w, substituting these
values into Eq. 1-2, and rearranging gives:

o Xsp — X

Wy = Wi (1-3)

- Xgp

Equation 1-3 is the design equation for the blending
system. If our assumptions are correct and if x; = X,
then this value of w, will produce the desired result,
X = x,,. But what happens if conditions change?

Control Question. Suppose that inlet concentration
x; varies with time. How can we ensure that the outlet
composition x remains at or near its desired value,
Xsp?

As a specific example, assume that x; increases to a
constant value that is larger than its nominal value, X;.
It is clear that the outlet composition will also increase

due to the increase in inlet composition. Consequently,
at this new steady state, x > xg,.

Next we consider several strategies for reducing the
effects of x; disturbances on x.

Method 1. Measure x and adjust w,. It is reasonable to
measure controlled variable x and then adjust w; ac-
cordingly. For example, if x is too high, w, should be
reduced; if x is too low, w, should be increased. This
control strategy could be implemented by a person
(manual control). However, it would normally be more
convenient and economical to automate this simple
task (automatic control).

Method 1 can be implemented as a simple control
algorithm (or control law),

WZ(I) =w; + K(‘[xsp - .\’(f)]
where K, is a constant called the controller gain. The
symbols, wy(f) and x(¢), indicate that w, and x change
with time. Equation 1-4 is an example of proportional
control, because the change in the flow rate, w,(t) — w»,
is proportional to the deviation from the set point,
Xg, — x(2). Consequently, a large deviation from set
point produces a large corrective action, while a small
deviation results in a small corrective action. Note that
we require K, to be positive because w, must increase
when x decreases, and vice versa. However, in other
control applications, negative values of K. are appro-
priate, as discussed in Chapter 7.

A schematic diagram of Method 1 is shown in Fig. 1.4.
The outlet concentration is measured and transmitted to
the controller as an electrical signal. (Electrical signals
are shown as dashed lines in Fig. 1.4.) The controller ex-
ecutes the control law and sends the calculated value of
w> to the control valve as an electrical signal. The control

(1-4)
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valve opens or closes accordingly. In Chapters 7 and 8
we consider process instrumentation and control hard-
ware in more detail.

Method 2. Measure xy, adjust w,. As an alternative to
Method 1, we could measure disturbance variable x|
and adjust w, accordingly. Thus, if x; > X;, we would
decrease w, so that w, < wy. If x; < X1, we would
increase w,. A control law based on Method 2 can be
derived from Eq. 1-3 by replacing x; with x{(¢) and w,
with wy(1):

Xsp — xl([)
1 = xg

wo(l) = wy (1-5)

The schematic diagram for Method 2 is shown in Fig.
1.5. Because Eq. 1-3 is valid only for steady-state condi-
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Figure 1.5 Blending system and Control Method 2.

1.3 Classification of Process Control Strategies §

tions, it is not clear just how effective Method 2 will be
during the transient conditions that occur after an x;
disturbance.

Method 3. Measure x; and x, adjust w,. This approach
is a combination of Methods 1 and 2.

Method 4. Use a larger tank. 1f a larger tank is used,
fluctuations in x; will tend to be damped out as a result
of the larger volume of liquid. However, increasing
tank size is an expensive solution due to the increased
capital cost.

1.3 CLASSIFICATION OF PROCESS
CONTROL STRATEGIES

Next, we will classify the four blending control strate-
gies of the previous section and discuss their relative
advantages and disadvantages. Method 1 is an example
of a feedback control strategy. The distinguishing fea-
ture of feedback control is that the controlled variable
is measured, and that the measurement is used to ad-
just the manipulated variable. For feedback control,
the disturbance variable is not measured.

It is important to make a distinction between negative
feedback and positive feedback. In the engineering liter-
ature, negative feedback refers to the desirable situa-
tion in which the corrective action taken by the
controller forces the controlled variable toward the set
point. On the other hand, when positive feedback oc-
curs, the controller makes things worse by forcing the
controlled variable farther away from the set point. For
example, in the blending control problem, positive feed-
back takes place if K. < 0, because w, will increase
when x increases.! Clearly, it is of paramount impor-
tance to ensure that a feedback control system incorpo-
rates negative feedback rather than positive feedback.

An important advantage of feedback control is that
corrective action occurs regardless of the source of
the disturbance. For example, in the blending process,
the feedback control law in (1-4) can accommodate
disturbances in wy, as well as x;. Its ability to handle
disturbances of unknown origin is a major reason why
feedback control is the dominant process control strat-
egy. Another important advantage is that feedback con-
trol reduces the sensitivity of the controlled variable to

!Note that social scientists use the terms negative feedback and
positive feedback in a very different way. For example, they would say
that teachers provide *“positive feedback” when they compliment
students who correctly do assignments. Criticism of a poor performance
would be an example of “negative feedback.”
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unmeasured disturbances and process changes. However,
feedback control does have a fundamental limitation: no
corrective action is taken until after the disturbance has
upset the process, that is, until after the controlled vari-
able deviates from the set point. This shortcoming is evi-
dent from the control law of (1-4).

Method 2 is an example of a feedforward control
strategy. The distinguishing feature of feedforward con-
trol is that the disturbance variable is measured, but the
controlled variable is not. The important advantage of
feedforward control is that corrective action is taken
before the controlled variable deviates from the set
point. Ideally, the corrective action will cancel the ef-
fects of the disturbance so that the controlled variable
is not affected by the disturbance. Although ideal can-
celation is generally not possible, feedforward control
can significantly reduce the effects of measured distur-
bances, as discussed in Chapter 14.

Feedforward control has three significant disadvan-
tages: (i) the disturbance variable must be measured (or
accurately estimated), (ii) no corrective action is taken
for unmeasured disturbances, and (iii) a process model
is required. For example, the feedforward control strat-
egy for the blending system (Method 2) does not take
any corrective action for unmeasured w; disturbances.
In principle, we could deal with this situation by mea-
suring both x; and w| and then adjusting w; accordingly.
However, in industrial applications it is generally un-
economical to attempt to measure all potential distur-
bances. A more practical approach is to use a combined
feedforward—feedback control system, in which feed-
back control provides corrective action for unmeasured
disturbances, while feedforward control reacts to elimi-

Calculations performed
by controller

Table 1.1 Concentration Control Strategies for the Blending
System
Measured Manipulated

Method Variable Variable Category

1 X wo FB

2 X %) FF

3 xypand x wH FF/FB

4 - - Design change

FB = feedback control; FF = feedforward control; FF/FB =
feedforward control and feedback control.

nate measured disturbances before the controlled vari-
able is upset. Consequently, in industrial applications
feedforward control is normally used in combination
with feedback control. This approach is illustrated by
Method 3, a combined feedforward-feedback control
strategy because both x and x| are measured.

Finally, Method 4 consists of a process design change
and thus is not really a control strategy. The four strate-
gies for the stirred-tank blending system are summarized
in Table 1.1.

1.3.1 Process Control Diagrams

Next we consider the equipment that is used to imple-
ment control strategies. For the stirred-tank mixing
system under feedback control in Fig. 1.4, the exit con-
centration x is controlled and the flow rate w, of pure
species A is adjusted using proportional control. To
consider how this feedback control strategy could be
implemented, a block diagram for the stirred-tank
control system is shown in Fig. 1.6. Operation of the
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Figure 1.6 Block diagram for composition [:n"A] (sensor) and )
feedback control system in Fig. 1.4. transmitter




