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Preface to the French edition
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Sylvain Blanquet, Chairman of the Biology Department, who first thought of
creating this interdisciplinary course some ten years ago, when such a project
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project in the context of the genomic revolution.

Jean-Marc Steyaert, our colleague at the Computer Science Department,
where he initiated the teaching of bioinformatics, and in which he remains
active. His critical attention, constant theoretical and methodological contribu-
tions, and increasing involvement in biological problematics, have contributed
in an essential way to bringing this book about, as well as influencing its
contents.

Philippe Dessen, who participated in some of the very early stages in the
teaching of bioinformatics at the Ecole Polytechnique while he was there; our
contacts with him over the years have been invaluable.

Finally, going from the stage of course-notes to a published book would not
have been possible without the decisive contributions of Jean-Paul Coard, of
Editions de I’Ecole Polytechnique, as well of those of Jean-Claude Mathieu,
Véronique Lecointe, Martine Maguer, and Frédéric Zantonio, involved in the
technical production.

Frédéric Dardel
Francois Képes



Preface to the English edition

At the suggestion of Vincent Schachter, to whom we are very grateful, we
decided to produce an English version of our book. We have worked closely
with Noah Hardy, to ensure the accuracy of the translation, and have updated
all chapters with new material where necessary. Chapter 8 was rewritten entirely
in English. We hope that this edition will enable many more readers to enjoy
our book. We would like to thank Joan Marsh and her colleagues at Wiley for
their help in producing this edition.

Frédéric Dardel
Francois Képes
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1

Genome sequencing

1.1 Automatic sequencing

The dideoxyribonucleotide method, developed during the carly 1980s in
England, at the Cambridge University laboratory of Fred Sanger, is today uni-
versally employed to sequence DNA fragments. It is based on the use of DNA
polymerase to elongate a single strand of DNA, starting from a primer, utiliz-
ing another DNA strand as the template. The DNA polymerase elongates the
strand in the presence of four deoxyribonucleotide monomers (dATP, dTTP,
dGTP, and dCTP) and a dideoxyribonucleotide analog (ddNTP), which acts as
the chain terminator (Figure 1.1). Specific incorporation of the analog by DNA
polymerase yields a mixture of fragments that selectively terminate at positions
corresponding to each nucleotide (As, in the example below).

The principle of the dideoxyribonucleotide (‘dideoxy’) method is illustrated
in Figure 1.2. Four parallel reactions are carried out, one with each ddNTP, the
DNA fragments obtained being separated by electrophoresis. A fluorescent
tracer is used to identify fragments synthesized by the polymerase so as to dis-
tinguish them from template DNA. The tracer is attached to one extremity of
the fragment, either at the 5’-end of the sequencing primer or at the 3-end of
the dideoxynucleotide terminator. Modern automatic sequencers utilize an in
situ detection system during electrophoresis, in which a laser beam emitting in
the fluorophore absorption spectrum is passed through the gel (Figure 1.3). A
migrating DNA fragment in the path of the laser beam then emits a fluorescent
signal detected by a photodiode on the other side of the gel. The signal is am-
plified and transmitted to a computer programmed with special software for
analyzing it.

Under favorable conditions, this technique permits reading up to 1,000
nucleotides per sequenced fragment, and an average of 500 to 800 nucleotides
during routine experiments. Two dideoxy methodologies coexist at present: one
employs a single photophore, and the other uses four, each with a distinct emis-
sion spectrum. In the first system, the four mixtures, corresponding to the four
ddNTPs, are introduced into different electrophoresis gel wells. Analysis is

Bioinformatics: Genomics and post-genomics, Frédéric Dardel and Frangois Képes
© 2006 John Wiley & Sons, Ltd
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Figure 1.1 Dideoxynucleotide structure

Replacement of the 3’-OH group in the dideoxynucleotide (ddNTP) by a 3’-H group prevents
formation of a phosphodiester link at its 3’-end. The modified nucleotides have a normal 5’-
triphosphate side, thus may be incorporated into the chain by DNA polymerase. Since A-T and G-
C pairing rules are followed during ddNTP incorporation, the ddATP will be incorporated wherever
there is a T facing it on the template strand.

accomplished by comparing the migration rates of the fragments in the four
resulting lanes.

In the second system, each of the four sequencing reactions uses a different
fluorophore that modifies the corresponding ddNTP. After the four polymer-
ization reactions have taken place, the resulting DNA fragments are mixed and
introduced into the same gel well. Constituent nucleotides are identified accord-
ing to the emission properties of the fluorescent tracers exposed to the laser
beam using selective color filters, after which a single gel lane is analyzed.

The four-fluorophore technique is a bit more expensive, since it requires
somewhat more varied chemistry. However, it has the advantage of being better
adapted to high-throughput systems, since more samples are analyzed on the
same gel. In the latest generation of automatic sequencers, the classical rectan-
gular polyacrylamide gel is replaced by a reusable capillary tube, whereas the
separation and detection principles remain unchanged. This technique reduces
the time required for an experiment from several hours to a few minutes, also
minimizing preparation time. In principle, the highest-performance multi-
capillary machines can process up to 1,000 samples per day, equivalent to
0.5 Mbases of raw sequence per day per machine.

Massive high-throughput sequencing centers today often use several dozen
such machines with robots that control the sequencing reactions automatically
executing pipetting, mixing, and incubation steps, thereby minimizing the risk
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Figure 1.2 Principle of the Sanger sequencing method

In the presence of a template DNA strand and the four dNTPs, DNA polymerase can elongate a
complementary DNA strand starting from an oligonucleotide primer, which hybridizes to the
template strand. When a dideoxynucleotide is incorporated by the polymerase, it acts as a chain
terminator, blocking further elongation. This incorporation is entirely random, proceeding at a rate
that is a function of the ratio of the dideoxynucleotide concentration to that of the correspond-
ing deoxynucleotide (here it is [ddATP] / [dATP] = 1 / 400).
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Figure 1.3 Automatic sequencing using 1- and 4-fluorophore sequencers
Samples introduced into the wells (top) are separated by electrophoresis on a polyacrylamide-urea
gel. The 5’-CAATCCCGGATGTTT sequence is read from bottom to top.

of human error (see Figure 1.4). The preparation of DNA templates remains
the most difficult step to automate, although significant progress has been made
in this respect.

1.2 Sequencing strategies

The sequencing methodologies described above fail to address major difficulties
that need to be considered when operating a large-scale sequencing program:

e  Only DNA fragments of between 500 and 1,000 nucleotides may be
sequenced;

* A sequencing primer that is complementary to the template is required for
the DNA polymerase to begin synthesizing.

Fortunately, these two obstacles may be simultaneously overcome by frag-
menting the DNA that is to be sequenced into segments of size compatible to
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Sample plate and Array of 96
injection needle capillary tubes

Electrophoresis
buffer

Figure 1.4 Advanced automatic multicapillary DNA sequencer for simultaneous sequencing of 96
samples. An automatic injection system executes several consecutive separations without manual
intervention ("Applied Biosystems).

Figure 1.5 Example of a sequencing profile
Intensity of the signal detected by the photodiodes as a function of separation time. Each color
is associated with one of the four separation reactions (A, G, C, and T).
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Sequencing primers

Direct sequencing Reverse sequencing

Figure 1.6 Sequencing in a vector starting with universal primers.

that of the sequencing system yield (~10° base pairs) and by inserting them into
an appropriate vector (plasmid or virus). The vector is selected according to
several criteria:

e It must be able to replicate autonomously in a convenient host cell (usually
Escherichia coli);

e It must bear one or several gene markers that permit selection of cells that
contain it (antibiotic resistance, for example);

e  Its nucleotide sequence must be known;

e It must contain restriction endonuclease sites that permit cloning by inser-
tion of foreign DNA fragments.

In practice, small bacterial plasmids are generally used. The DNA to be
sequenced is fragmented and ligated into the vector, which is then propagated
in host cells. The clone cell lines (derived from a single initial cell by successive
division), each containing a different recombinant vector with the same inserted
DNA fragment are then isolated. A library of DNA fragments may thus be con-
stituted by collecting a large number of these clone cell lines, and used for further
study (see Figure 1.7).

In order to determine the DNA sequence of such a fragment, the correspond-
ing cell line is cultured and its DNA extracted for sequencing by the dideoxynu-
cleotide method. Since the nucleotide sequences located on each side of the
vector clone site are known, they are used as the primer (see Figure 1.6). These
primers are independent of the DNA inserted into the vector and may be used
to sequence any fragment; they are therefore called universal primers. Because
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Figure 1.7 Strategy for constructing a DNA library.
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such primers are constant, it is very easy to incorporate fluorescent tracers
needed during oligonucleotide synthesis into them. The fluorescent primers thus
produced may be used in most sequencing procedures.

1.3 Fragmentation strategies

In sequencing a long stretch of DNA — especially a complete genome — it is essen-
tial that it be cut into fragments of a size compatible with the sequencing tech-
nology. This poses two additional questions:

e Which cutting strategy should be employed?

e  How can the complete sequence be reconstituted from the pieces?

These two questions are intricately related, since the reassembly method is
sensitively dependent on how the fragmentation is accomplished. Two
approaches have mainly been used: random fragmentation and segmentation
after mapping.

Random fragmentation

In random fragmentation, the full length of the DNA to be sequenced is cut into
small pieces of optimal sequencing size (~1,000 base pairs). A high cutting fre-
quency (one site per 200-250bp) restriction enzyme may be used for this
purpose, under conditions of partial digestion (10-20 percent) in order to gen-
erate 1,000- to 2,000-bp fragments. Alternatively, ultrasound may be used to
break the DNA into small pieces, since the mechanical constraints induced by
ultrasonic vibrations in DNA in solution are sufficient to rupture the long phos-
phodiester chain.

The mechanical (ultrasound) method results in more random breaks than the
enzymatic method but necessitates an additional step to repair the extremities
of the DNA fragments produced, since breaks produced by ultrasound treat-
ment do not occur at the same level in the two DNA strands. This may require
paring the extended extremities of single strands, so that the resulting fragments
may be inserted into blunt cloning sites in the sequencing vector.

The basic postulate of the random or shotgun method is that if enough clones
are analyzed, the entire original DNA sequence will be covered. Assuming that
fragmentation and cloning are really random processes and that the DNA
sequence is sufficiently large compared with that of individual clones (which is
generally the case for a full genome), the probability that a given DNA nucleotide
studied not be covered by random sequencing is a Poisson distribution:
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Po = eiN/l',

where N is the total number of nucleotides sequenced in the set of clones and
L the total length of the DNA studied. N/L is the coverage rate, which is the
rate of data redundancy. In order to obtain a 99 percent sequencing rate, that
is, po = 0.01, it is necessary to sequence a number of clones equal to 4.6 times
(log 0.01 = —4.6) the length of the DNA studied.

In the case of a genome or a very long DNA fragment, it is thus practically
inevitable that gaps remain in the sequence, which must be filled using some
approach other than the random shotgun method. It is also possible to statisti-
cally evaluate the length and average number of such gaps:

N/L

Total length of gaps=Le~
Average length of each gap=Ln/N
Number of gaps = N/ne_m',

where 7 is the average length of each fragment sequenced (~500 nucleotides).
The following is an example of the results for a bacterial genome (L = 10°bp)
and for the genome of a higher organism, such as a mammal or a plant (L =
10°bp) with a coverage rate of factor 6 (an average value for this type of
project), which yields 99.75 percent of the sequenced nucleotides:

The random approach raises two important points:

e It is impossible to cover the entire genome without greatly increasing the
number of clones to be sequenced; to be nearly certain of covering the
entire bacterial genome in the above example would require that p, <
107%, at least 14 times the coverage rate. From the practical point of view,
it is more economical to accept a coverage rate of between 4 and 6 and
then fill the few dozen remaining gaps ad hoc (see Table 1.1 below).

e Assembly of the puzzle of the set of fragments may require systematic side-
by-side comparison of all the sequences obtained. For k sequences, this

Table 1.1

Bacteria (1 Mbp) Mammals (1 Gbp)
Number of sequences 12,000 12,000,000
Number of remaining gaps 30 29,750

Average gap size 200 200




