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FOREWORD

Je préfére la nommer ainsi [algébre aistraite]
plutot qu’algebre moderne, parcequclie

vivra sans doute longtemps et finira donc

par devenir lalgébre ancienne.

F. SEVERI
Liege, 1949

The present book is meant as a basic text for a one year course in algebra,
at the graduate level.

Unfortunately, the amount of algebra which one should ideally absorb
during this first year in order to have a proper background (irrespective of
the subject in which one eventually specializes), exceeds the amourt which
can be covered physically by a lecturer during a one year course. Hence more
material must be included than can actually be handled in class.

Many shortcuts can be taken in the presentation of the topics, which
admits many variations. For instance, one can proceed into field theory and
Galois theory immediately after giving the basic definitions for groups, rings,
fields, polynomials in one variable, and vector spaces. Since the Galois theory
gives very quickly an impression of depth, this is very satisfactory in many
respects. " :

I have added a section on non-abelian Kummer theory, because several
times during the last ten years I have seen the need for this kind of material in
several contexts of number theory, and there was no satisfactory reference for it.

It is appropriate here to recall my original indebtedness to Artin, who first
taught me algebra. The treatment of the basics of Galois theory is much
influenced by the presentation in his own monograph.

Instead of going into field theory, one can also first treat the theory of rings,
modules, and commutative Noetherian rings, taking the direction of commu-
tative algebra; or one can also treat the linear algebra, after covering the basic
definitions. The chapters have been so written as to allow maximal flexibility
in this respect, and I have frequently committed the crime of lése-Bourbaki by
repeating short arguments or definitions to make certain sections or chapters
logically independent of each other.

Granting the material which under no circumstances can be omitted from
a basic course, there exist several options for leading the course in various
directions. Itisimpossible to treat all of them with the same degree of thorough- .
ness. The precise point at which one is willing to stop in any given direction will
depend on time, place, and mood. The chapters on real fields and absolute
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vi FOREWORD

values, for instance, can be omitted safely, or can be read by students indepen-
dently of the class. The chapter on group representations also. The Witt
theorem on quadratic forms can also be omitted. However, any book with the
aims of the present one must include a choice of these topics, pushing ahead in
deeper waters, while-stopping short of full involvement, and keeping the number,
of pages within ré8sonable bounds. There can be no universal agreement on
these matters, not even between the author and himself. Thus the concrete
decisions as to what to include and what not to include are finally taken on
grounds of general coherence and aesthetic balance. Anyone teaching the
course will want to impress their own personality on the material, and may push
certain topics with more vigor than I have, at the expense of others. Nothing
in the present book is meant to inhibit this.

In this second edition, I have added several topics, having mostly to do with
commutative algebra and homological algebra, for instance: projective and
injective modules, leading to an extended treatment of homological algebra,
with derived functors, the Hilbert syzygy theorem, and a more thorough dis-
cussion of K-groups and Euler characteristics; the Quillen-Suslin theorem
(previously Serre’s conjecture) that finite projective modules over a polynomial
ring are free; the Weierstrass preparation theorem; the Hilbert polynomial in
connection with filtered and graded modules ; more material on tensor products,
like flat-modules and derivations; etc. In light of the pervasive use of all this
material in algebraic geometry, topology, representation theory (finite and
infinite dimensional), differential geometry, several complex variables and
whatnot (e.g. Griffiths—Harris), it seemed important to expand the treatment
of these topics. Today, one has a better perspective than twenty years ago as
to what constitutes fundamentally important results which can be covered in a
few pages, maximizing the results and minimizing the cost in space. For a more
complete treatment of commutative algebra, I recommend Matsumura’s book
on the subject.

As in the first edition, there is some reason to include more on linear groups
and their representations, and on Lie algebras, than I could do and still have a
reasonably sized book, say holding in one volume. However, I have added a
proof of the simplicity of SL, modulo its center. But again, several excellent
texts on Lie algebras and Lie groups have become available, so I do not feel too
guilty in omitting these topics. See in particular Serre’s notes, Lie Algebras and
Lie Groups, and for a more complete treatment, Bourbaki’s and Jacobson’s
books on the same subject. ’

I have added a number of new exercises, especially in the chapters which are
most likely to be of fundamental use, like the chapter on group theory,
Nocetherian rings, Galois theory, and tensor products.

As prerequisites, 1 assume only that the reader is acquainted with the basic
language of mathematics (i.e. essentially sets and mappings), and the integers
and rational numbers. A more specific description. of what is assumed is
summarized on the following pages. On a few occasions, I use determinants
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before treating these formally in the text. Most readers will already be ac-
quainted with determinants, and I feel it is better for the organization of the
whole book to allow such minor deviations from a total ordering of the logic
involved.

SERGE LLANG
New Haven, 1984



PREREQUISITES

We assume that the reader is familiar with sets, and the symbols m, U,
D, c,e. If A, B are sets, we use the symbol A = B to mean that 4 is contained
in B but may be equal to B. Similarly for A > B. :

If f: A —> B is a mapping of one set into another, we write

x> f(x) ,

to denote the effect of f on an element x of A. We distinguish between the
arrows — and . We denote by f(A4) the set of all elements f(x), with x € A.

Let f: A — B be a mapping (also called a map). We say that f is injective
if x # y implies f(x) # f(y). We say f is surjective if given b € B there exists
a € A4 such that f(a) = b. We say that f is bijective if it is both SuerCthC and
injective.

A subset 4 of a set B is said to be proper if 4 # B.

Let f: A — B be a map, and A’ a subset of A. The restriction of f to A’ is
a map of A" into B denoted by f|4".

Hf:A—> Band g: B — C are maps, then we have a composnte mapgo f
such that (g o f)(x) = g(f(x)) for all x € A.

Letf: A — B be a map, and B’ a subset of B. By /'~ !(B’) we mean the subset
of A consisting of all x € 4 such that f(x) € B'. We call it the inverse image of
B'. We call f(A) the image of f.

A diagram

ALoB
\ /-
C
is said to be commutative if g o f = h. Similarly, a diagram

> B

1

—.,D

ix
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is said to be commutative if go f = iy o 9. We deal sometimes with more
. complicated diagrams, consisting of arrows between various objects. Such
diagrams are called commutative if, whenever it is possible to go from one
object to another by means of two sequences of arrows, say

Al [ >A2 szr“. Sn *An

and

then
fn°fn—1°"'°f1 =9m°YGm-1°"""°G1;

in other words, the composite maps are equal. Most of our diagrams are
composed of triangles or squares as above, and to verify that a diagram con-
sisting of triangles or squares is commutative, it suffices to verify that each
triangle and square in it is commutative.

We assume that the reader is acquainted with the integers and rational
numbers, denoted respectively by Z and Q. For many of our examples, we also
assume that the reader knows the real and complex numbers, denoted by R
and C.

Let 4 and I be two sets. By a family of elements of A4, indexed by I, one
means a map f:I — A. Thus for each i € I we are given an element /(i) € A.
Although a family does not differ from a map, we think of it as determining a
collection of objects from A, and write it often as

ASDhies

or
{al‘}ieh g

writing a; instead of f(i). We call I the indexing set.

We assume that the reader knows what an equivalence relation is. Let 4
be a set with an equivalence relation, let E be an equivalence class of elements
of A. We sometimes try to define a map of the equivalence classes into some
set B. To define such a map f on the class E, we sometimes first give its value
on an element x € E (called, a representative of E), and then show that it is
independent of the choice of representative x € 7. In that case we say that f
is well defined.

We have products of sets, say finite products 4 x B, or A x --- x A,,and
products of families of sets.

We shall use Zorn’s lemma, which we describe in Appendix 2.
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Part One

GROUPS, RINGS
| ~and
MODULES

This part introduces the basic notions of algebra, and the main difficulty
for the beginner is to absorb a reasonable vocabulary in a short time. None
of the concepts is difficult, but there is an accumulation of new concepts which

_may sometimes seem heavy.

To understand the next parts of the book, the reader needs to know
essertially only the basic definitions of this first part. Of course, a theorem
may be used later for some specific and isolated applications, but on the
whole, we have avoided making long logical chains of interdependence.
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§1. MONOIDS

Let S be a set. A mapping
Sx8§-8

is sometimes called a law of composition (of S into itself). If x, y are elements of
S, the image of the pair (x, y) under this mapping is also called their product
under the law of composition, and will be denoted by xy. (Sometimes, we also -
write x - y, and in many cases it is also convenient to use an additive notation,
and thus to write x + y. In that case, we call this element the sum of x and y.
It is customary to use the notation x + y only when the relation x + y =
y + x holds.)

Let S be a set with a law of composition. If x, y, z are elements of S, then we
may form their product in two ways: {xy)z and x(yz). If (xy)z = x(yz) for all
x. y. z in S then we say that the law of composition is associative.

An element e of S such that ex =-x = xe for all xe S is called a unit
element. (When the law of composition is written additively, the unit element
is denoted by 0, and is called a zero element.) A unit element is unique, for if
¢’ is another unit element, we have

e=e¢ =¢e

by assumption. In most cases, the unit element is written simply 1 (instead of ¢).
For most of this chapter, however, we shall write ¢ so as to avoid confusion in
proving the most basic properties.

A monoid is a set G, with a law of composition which is associative, and
having a unit element (so that in particular, G is not empty).
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Let G be a monoid, and x,, . .., x, elements of G (where n is an integer > 1).
We define their product inductively:

n
nxv= Xy "'xn=(xl"'xn—l)xn~
v=1

We then have the following rule:

m m+n

n
l—[xu. I_[xm+v: I_va!
1 v=1

u= v=1

which essentially asserts that we can insert parentheses in any manner in our
product without charging its value. The proof is easy by induction, and we shall
leave it as an exercise.

One also writes

m+n n
[1x, instead of [ xn.,
m+ 1 v=1

and we define

0
[Ix,=e
v=1
As a matter of convention, we agree also that the empty product is equal
to the unit element.
It would be possible to define more general laws of composition, i.e. maps
S, x §, - S using arbitrary sets. One can then express associativity and
commutativity in any setting for which they make sense. For instance, for
commutativity we need a law of composition

f:SxS->T

where the two sets of departure are-the same. Commutativity then means
f(x,y) = f(y, x). or xy = yx if we omit the mapping f from the notation. For
associativity, we leave it to the reader to formulate the most general combination
of sets under which it will work. We shall meet special cases later, for instance
arising from maps

SxS->S8 and SxT-T.

Then a product (xy)z makes sense with x€ S, ye S, and ze T. The product
x(yz) also makes sense for such elements x, y, z and thus it makes sense to say
that our law of composition is associative, namely to say that for all x, y, z as
above we have (xy)z = x(yz)."

1 If the law of composition of G is commutative, we also say that G is com-
mutative (or abelian).



