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Preface

Software systems are now ubiquitous. Virtually all electrical equipment now
includes some kind of software; software is used to help run manufacturing indus-
try, schools and universities, health care, finance and government; many people now
use software of different kinds for entertainment and education. The specification,
development, management and evolution of these software systems make up the
discipline of software engineering.

Even simple software systems have a high inherent complexity so engineer-
ing principles have to be used in their development. Software engineering is
therefore an engineering discipline where software engineers use methods and
theory from computer science and apply this cost-effectively to solve difficult
problems. These difficult problems have meant that many software development
projects have not been successful. However, most modern software provides good
service to its users; we should not let high-profile failures obscure the real successes
of software engineers over the past 30 years.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will inevitably disagree with my opinions and with the choice of material
which I include. Such disagreement is a healthy reflection of the diversity of the
discipline and is essential for its evolution. Nevertheless, I hope that all software
engineers and software engineering students can find something of interest here.

Although the book is intended as a general introduction to software
engineering, it is biased, to some extent, towards my own interests in system require-
ments engineering and critical systems. I think these are particularly important for
software engineering in the 21st century where the challenge we face is to ensure
that our software meets the real needs of its users without causing damage to them
or to the environment.

I dislike zealots of any kind, whether they are academics preaching the
benefits of formal methods or salesmen trying to convince me that some tool or
method is the answer to software development problems. There are no simple
solutions to the problems of software engineering and we need a wide spectrum of
tools and techniques to solve software engineering problems. I therefore don’t
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describe commercial design methods or CASE systems but paint a broad picture of
software engineering methods and tools.

Software engineering research has made tremendous strides over the past 15
years but there has been a relatively slow diffusion of this research into industrial
practice. The principal challenge which we now face is not the development of new
techniques and methods but the transfer of advanced software engineering research
into everyday use. I see this book as a contributor to this process. I therefore discuss
some techniques, such as viewpoints for requirements engineering, which are
reasonably well developed but which are not yet widely used in industry.

Finally, it is impossible to over-emphasize the importance of people in the
software engineering process. People specify, design and implement systems which
help other people with their work. Most of the difficulties of very large system
engineering are not technical problems but are the problems of managing large num-
bers of people with diverse priorities, abilities and interests. Software engineering
techniques and tools are only effective when applied in a context which respects
these different skills and abilities.

Changes from the fourth edition

Like many software systems, this book has grown and changed since its first edition
was published in 1982. This latest edition started as a relatively minor update of the
fourth edition but, in the course of writing the book, I decided that more significant
revision and re-engineering was necessary. Although much of the material in the
fourth edition has been retained, the following changes have been made:

® There are five completely new chapters covering computer-based system
engineering, requirements analysis, architectural design, process improve-
ment and software re-engineering.

® The book has been restructured into eight parts covering an introduction to
software engineering, requirements and specification, design, dependable
systems development, verification and validation, CASE, management, and
software evolution.

® There have been radical revisions of the material on requirements engineer-
ing, object-oriented and functional design, and CASE.

® Project management is introduced in the first part of the book then covered in
more detail in a separate section which incorporates previous material on
human factors. There is more emphasis on quality management.

In previous editions, I have presented program examples in Ada as I consider this an
excellent language for large-scale software engineering. However, Ada has not
become as widely used as was once predicted. C or C++ are the programming
languages of choice for most personal computer and workstation applications.
Because of this wide use, I have included C++ as well as Ada versions of most of
the program examples in the book. For safety-critical systems, however, I think



it unwise to use a language which includes potentially unsafe constructs. Those
examples are, therefore, only presented in Ada.

I considered for a long time whether it would be appropriate to include a new
chapter on professional and ethical issues. I decided not to do so because the topic
is so subjective that it is difficult to present in a balanced way in a single chapter.
There are no absolutes in this area and it is best addressed in an interactive context
rather than as a chapter of a book. However, I have included a brief discussion of
these issues in the introduction to the book. I have also included possible ethical and
professional topics for discussion as exercises in many chapters. Links to WWW
pages on this topic are included in the Web page whose URL is given below.

The further reading associated with each chapter has been updated from
previous editions. However, in many cases, articles written in the 1980s are still the
best introduction to some topics. As new articles which are useful become available,
I will include them on the Web page. The author index in previous editions has been
removed. Rather, each entry in the References section includes the page numbers
where it has been referenced.

Readership

The book is aimed at students in undergraduate and graduate courses and at software
engineers in commerce and industry. It may be used in general software engineering
courses or in courses such as advanced programming, software specification,
software design or management. Practitioners may find the book useful as general
reading and as a means of updating their knowledge on particular topics such as
requirements engineering, architectural design, dependable systems development
and process improvement. Wherever practicable, the examples in the text have been
given a practical bias to reflect the type of applications which software engineers
must develop.

I assume that readers have a basic familiarity with programming and modern
computer systems. Some examples rely on knowledge of basic data structures such
as stacks, lists and queues. The chapters on formal specification assume knowledge
of very elementary set theory. No other mathematical background is required.

Using the book as a course text

There are three main types of software engineering courses where this book can be
used:

(1) General introductory courses in software engineering. For students who have
no previous software engineering experience, you can start with the
introductory section then pick and choose the introductory chapters from the
different sections of the book. This will give students a general overview of
the subject with the opportunity of more detailed study for those students who
are interested.
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(2) Introductory or intermediate courses on specific topics in software engineer-
ing such as software specification, design or dependable systems
development. Each of the parts in the book can serve as a text in its own right
for an introductory or intermediate course on that topic.

(3)  More advanced courses in specific software engineering topics. In this case,
the chapters in the book form a foundation for the course which must be
supplemented with further reading which explores the topic in more detail.
All chapters include my suggestions for further reading.

The benefit of a general text like this is that it can be used in several different related
courses. At Lancaster, we use the text in an introductory software engineering
course, in courses on specification, design and critical systems and in a software
management course where it is supplemented with further reading. With a single
text, students are presented with a consistent view of the subject. They also like the
extensive coverage because they don’t have to buy several different books.

This book covers all suggested material in Units SE2 to SES in the
ACMI/IEEE 1991 Curriculum. It also includes material to supplement an introduc-
tory programming text which would normally cover Unit SE1 and all material in the
suggested course entitled ‘Advanced Software Engineering’.

Supplements

The following supplements are available:

® An instructor’s guide including hints on teaching the material in each
chapter, class and term project suggestions, and solutions to some of the
exercises. This is available in Postscript or on paper from Addison-Wesley.

® A set of overhead projector transparencies for each chapter. These are
available in Postscript and in Microsoft Powerpoint format.

® Source code for most of the individual program examples including
supplementary code required for compilation.

® An introduction to the Ada programming language.

® Information on course presentation using electronically mediated communi-
cation and links to material for that approach to teaching.

These are available, free of charge, over the Internet at URL:
http://www.comp.lancs.ac.uk/computing/resources/ser/
This page also includes links to other software engineering resources which you may

find useful. If you have any problems, you can contact me by E-mail
(is@comp.lancs.ac.uk).
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Part One
Introduction

The chapters in this introductory part introduce the topic of software
engineering and place it in the context of a system engineering process.
They emphasize that software engineering is a managed process by
including discussions of software and system engineering process models
and a short introduction to fundamentals of project management. Project
management is also discussed in more detail later in Part 7.

Contents
| Introduction 3
2 Computer-based System Engineering 23

3 Project Management 45






Introduction

Objectives

To define software engineering and to explain why it is important.

To introduce the concept of a software product and the attributes of
well-engineered software.

To describe the basic activities of the software engineering process and
to illustrate a number of generic software process models.

To explain why software process visibility is essential for process
management.

To explain why software engineers must consider their responsibilities to

the engineering profession.
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