Software

Engineering

lan Sommerville

ADDISON-WESLEY

FIFTH EDITION

Software

Engineering

lan Sommerville

Lancaster University

A
A\ A 4

ADDISON-WESLEY

HARLOW, ENGLAND ® READING, MASSACHUSETTS ® MENLO PaRk, CALIFORNIA ® New YORK
Don MitLs, ONTARIO ® AMSTERDAM ® BONN ® SYDNEY ® SINGAPORE
Tokvo ® MADRID @ SAN Juan ® Mian @ Mexico City e SeouL ® Taipel

© 1995 Addison-Wesley Publishers Ltd.
© 1995 Addison-Wesley Publishing Company Inc.

Addison Wesley Longman Limited
Edinburgh Gate

Harlow

Essex, CM20 2JE

England

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without prior written permission of the publisher.

The programs in this book have been included for their instructional value. They have been
checked with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Addison-Wesley has made every attempt to supply trademark
information about manufacturers and their products mentioned in this book.

Cover designed by Designers & Partners of Oxford
Typeset by Meridian Colour Repro Limited, Pangbourne
Printed in the United States of America

First edition published 1982. Reprinted 1983 and 1984.

Second edition published 1984. Reprinted 1985, 1986, 1987 and 1988.

Third edition published 1989. Reprinted 1989, 1990 (twice) and 1991.

Fourth edition published 1992. Reprinted 1993 and 1994.

Fifth edition printed 1995. Reprinted 1996 (twice). Reprinted 1997 and 1998 (twice).

ISBN 0-201-42765-6

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Sommerville, Ian.
Software engineering / Ian Sommerville. -- 5th ed.
p- cm. -- (International computer science series)
Includes bibliographical references and index.
ISBN 0-201-42765-6 (alk. paper)
1. Software engineering. L. Title. II. Series.
QA76.758.5657 1996
005. 1--dc20 95-38788
CIp

Preface

Software systems are now ubiquitous. Virtually all electrical equipment now
includes some kind of software; software is used to help run manufacturing indus-
try, schools and universities, health care, finance and government; many people now
use software of different kinds for entertainment and education. The specification,
development, management and evolution of these software systems make up the
discipline of software engineering.

Even simple software systems have a high inherent complexity so engineer-
ing principles have to be used in their development. Software engineering is
therefore an engineering discipline where software engineers use methods and
theory from computer science and apply this cost-effectively to solve difficult
problems. These difficult problems have meant that many software development
projects have not been successful. However, most modern software provides good
service to its users; we should not let high-profile failures obscure the real successes
of software engineers over the past 30 years.

Books inevitably reflect the opinions and prejudices of their authors. Some
readers will inevitably disagree with my opinions and with the choice of material
which I include. Such disagreement is a healthy reflection of the diversity of the
discipline and is essential for its evolution. Nevertheless, I hope that all software
engineers and software engineering students can find something of interest here.

Although the book is intended as a general introduction to software
engineering, it is biased, to some extent, towards my own interests in system require-
ments engineering and critical systems. I think these are particularly important for
software engineering in the 21st century where the challenge we face is to ensure
that our software meets the real needs of its users without causing damage to them
or to the environment.

I dislike zealots of any kind, whether they are academics preaching the
benefits of formal methods or salesmen trying to convince me that some tool or
method is the answer to software development problems. There are no simple
solutions to the problems of software engineering and we need a wide spectrum of
tools and techniques to solve software engineering problems. I therefore don’t

vi

Preface

describe commercial design methods or CASE systems but paint a broad picture of
software engineering methods and tools.

Software engineering research has made tremendous strides over the past 15
years but there has been a relatively slow diffusion of this research into industrial
practice. The principal challenge which we now face is not the development of new
techniques and methods but the transfer of advanced software engineering research
into everyday use. I see this book as a contributor to this process. I therefore discuss
some techniques, such as viewpoints for requirements engineering, which are
reasonably well developed but which are not yet widely used in industry.

Finally, it is impossible to over-emphasize the importance of people in the
software engineering process. People specify, design and implement systems which
help other people with their work. Most of the difficulties of very large system
engineering are not technical problems but are the problems of managing large num-
bers of people with diverse priorities, abilities and interests. Software engineering
techniques and tools are only effective when applied in a context which respects
these different skills and abilities.

Changes from the fourth edition

Like many software systems, this book has grown and changed since its first edition
was published in 1982. This latest edition started as a relatively minor update of the
fourth edition but, in the course of writing the book, I decided that more significant
revision and re-engineering was necessary. Although much of the material in the
fourth edition has been retained, the following changes have been made:

® There are five completely new chapters covering computer-based system
engineering, requirements analysis, architectural design, process improve-
ment and software re-engineering.

® The book has been restructured into eight parts covering an introduction to
software engineering, requirements and specification, design, dependable
systems development, verification and validation, CASE, management, and
software evolution.

® There have been radical revisions of the material on requirements engineer-
ing, object-oriented and functional design, and CASE.

® Project management is introduced in the first part of the book then covered in
more detail in a separate section which incorporates previous material on
human factors. There is more emphasis on quality management.

In previous editions, I have presented program examples in Ada as I consider this an
excellent language for large-scale software engineering. However, Ada has not
become as widely used as was once predicted. C or C++ are the programming
languages of choice for most personal computer and workstation applications.
Because of this wide use, I have included C++ as well as Ada versions of most of
the program examples in the book. For safety-critical systems, however, I think

it unwise to use a language which includes potentially unsafe constructs. Those
examples are, therefore, only presented in Ada.

I considered for a long time whether it would be appropriate to include a new
chapter on professional and ethical issues. I decided not to do so because the topic
is so subjective that it is difficult to present in a balanced way in a single chapter.
There are no absolutes in this area and it is best addressed in an interactive context
rather than as a chapter of a book. However, I have included a brief discussion of
these issues in the introduction to the book. I have also included possible ethical and
professional topics for discussion as exercises in many chapters. Links to WWW
pages on this topic are included in the Web page whose URL is given below.

The further reading associated with each chapter has been updated from
previous editions. However, in many cases, articles written in the 1980s are still the
best introduction to some topics. As new articles which are useful become available,
I will include them on the Web page. The author index in previous editions has been
removed. Rather, each entry in the References section includes the page numbers
where it has been referenced.

Readership

The book is aimed at students in undergraduate and graduate courses and at software
engineers in commerce and industry. It may be used in general software engineering
courses or in courses such as advanced programming, software specification,
software design or management. Practitioners may find the book useful as general
reading and as a means of updating their knowledge on particular topics such as
requirements engineering, architectural design, dependable systems development
and process improvement. Wherever practicable, the examples in the text have been
given a practical bias to reflect the type of applications which software engineers
must develop.

I assume that readers have a basic familiarity with programming and modern
computer systems. Some examples rely on knowledge of basic data structures such
as stacks, lists and queues. The chapters on formal specification assume knowledge
of very elementary set theory. No other mathematical background is required.

Using the book as a course text

There are three main types of software engineering courses where this book can be
used:

(1) General introductory courses in software engineering. For students who have
no previous software engineering experience, you can start with the
introductory section then pick and choose the introductory chapters from the
different sections of the book. This will give students a general overview of
the subject with the opportunity of more detailed study for those students who
are interested.

Preface

vii

viii

Preface

(2) Introductory or intermediate courses on specific topics in software engineer-
ing such as software specification, design or dependable systems
development. Each of the parts in the book can serve as a text in its own right
for an introductory or intermediate course on that topic.

(3) More advanced courses in specific software engineering topics. In this case,
the chapters in the book form a foundation for the course which must be
supplemented with further reading which explores the topic in more detail.
All chapters include my suggestions for further reading.

The benefit of a general text like this is that it can be used in several different related
courses. At Lancaster, we use the text in an introductory software engineering
course, in courses on specification, design and critical systems and in a software
management course where it is supplemented with further reading. With a single
text, students are presented with a consistent view of the subject. They also like the
extensive coverage because they don’t have to buy several different books.

This book covers all suggested material in Units SE2 to SES in the
ACMI/IEEE 1991 Curriculum. It also includes material to supplement an introduc-
tory programming text which would normally cover Unit SE1 and all material in the
suggested course entitled ‘Advanced Software Engineering’.

Supplements

The following supplements are available:

® An instructor’s guide including hints on teaching the material in each
chapter, class and term project suggestions, and solutions to some of the
exercises. This is available in Postscript or on paper from Addison-Wesley.

® A set of overhead projector transparencies for each chapter. These are
available in Postscript and in Microsoft Powerpoint format.

® Source code for most of the individual program examples including
supplementary code required for compilation.

® An introduction to the Ada programming language.

® Information on course presentation using electronically mediated communi-
cation and links to material for that approach to teaching.

These are available, free of charge, over the Internet at URL:
http://www.comp.lancs.ac.uk/computing/resources/ser/
This page also includes links to other software engineering resources which you may

find useful. If you have any problems, you can contact me by E-mail
(is@comp.lancs.ac.uk).

Acknowledgements

I am indebted to a number of reviewers who provided helpful and constructive crit-
icism of early drafts of this book. Many thanks to Leonor Barocca of the Open
University, Stewart Green of the University of the West of England, Andrew
McGettrick of the University of Strathclyde, Philip Morrow of the University of
Ulster and Ray Welland of the University of Glasgow. Thanks also to Rodney L.
Bown, University of Houston-Clear Lake, Charles P. Howerton, Metropolitan State
College of Denver, Josephine DeGuzman Mendoza of California State University,
San Bernardino and David C. Rine of George Mason University.

Thanks also to all users of previous editions who have provided me with
comments and constructive criticism and to my colleagues in the Cooperative
Systems Engineering Group and Lancaster University.

Finally, a big thank-you to my wife Anne and daughters, Ali and Jay. They
have provided coffee, encouragement and occasional inspiration during the long
hours I spent writing this book.

Ian Sommerville
August 1995

Preface

ix

Contents

Preface
Part One

Chapter 1

1.1
1.2
1.3
1.4
1.3

Chapter 2

2.1
22
2.3
24
2.5
2.6

Chapter 3

3.1
32
33
34

Introduction

Introduction

Software products

The software process
Boehm’s spiral model
Process visibility
Professional responsibility

Computer-based System Engineering

Systems and their environment
System procurement

The system engineering process
System architecture modelling
Human factors

System reliability engineering

Project Management

Management activities
Project planning
Activity organization
Project scheduling

13
16
18

23

25
26
28
36
38
40

45

47
48
51
52

xi

xii

Contents

Part Two

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

4

4.1
4.2
43
4.4

5

5.1
5.2
5.3
54

6

6.1
6.2
6.3
6.4

7

7.1
7.2
7.3

8

8.1
8.2
8.3

9

9.1
9.2
9.3

10

10.1
10.2
10.3

Requirements and Specification

Requirements Engineering

The requirements engineering process
The software requirements document
Requirements validation
Requirements evolution

Requirements Analysis

Viewpoint-oriented analysis
Method-based analysis

System contexts

Social and organizational factors

System Models

Data-flow models
Semantic data models
Object models

Data dictionaries

Requirements Definition and Specification

Requirements definition
Requirements specification
Non-functional requirements

Software Prototyping

Prototyping in the software process
Prototyping techniques
User interface prototyping

Formal Specification

Formal specification on trial
Transformational development
Specifying functional abstractions

Algebraic Specification

Systematic algebraic specification
Structured specification
Error specification

61

63

67
68
70
73

79

82
85
92
94

99

101
103
106
112

117

118
122
130

137

140
145
151

157

159
164
165

171

174
178
183

Chapter 11

11.1
11.2
11.3

Part Three

Chapter 12

12.1
12.2
12.3

Chapter 13

13.1
13.2
13.3
13.4

Chapter 14

14.1
14.2
14.3
14.4

Chapter 15

15.1
15.2
15.3
15.4

Chapter 16

16.1
16.2
16.3
16.4
16.5

Model-based Specification

Z schemas
The Z specification process
Specifying ordered collections

Software Design

Software Design

The design process
Design strategies
Design quality

Architectural Design

System structuring

Control models

Modular decomposition
Domain-specific architectures

Object-oriented Design

Objects, object classes and inheritance

Object identification

An object-oriented design example

Concurrent objects

Function-oriented Design

Data-flow design
Structural decomposition
Detailed design

A comparison of design strategies

Real-time Systems Design

System design

State machine modelling
Real-time executives
Monitoring and control systems
Data acquisition systems

189

190
194
201

207

209

210
215
217

225

228
233
238
241

247

250
255
258
269

275

278
280
282
285

297

299
302
304
307
312

Contents

xiii

xiv Contents

Chapter 17

17.1
17.2
17.3
17.4
17.5

Part Four

Chapter 18

18.1
18.2
18.3
18.4

Chapter 19

19.1
19.2
19.3
19.4

Chapter 20

20.1
20.2
20.3
20.4

Chapter 21

21.1
21.2
21.3

Part Five

Chapter 22

22.1
22.2
223

User Interface Design

Design principles
User—system interaction
Information presentation
User guidance

Interface evaluation

Dependable Systems

Software Reliability

Software reliability metrics
Software reliability specification
Statistical testing

Reliability growth modelling

Programming for Reliability

Fault avoidance

Fault tolerance
Exception handling
Defensive programming

Software Reuse

Software development with reuse
Software development for reuse
Generator-based reuse
Application system portability

Safety-critical Software

An insulin delivery system
Safety specification
Safety assurance

Verification and Validation

Verification and Validation

The testing process
Test planning
Testing strategies

319

321
323
330
335
341

347

349

354
357
359
362

369

370
378
381
384

395

397
400
408
410

419

422
424
431

443

445

448
450
452

Chapter 23

23.1
23.2
23.3

Chapter 24

24.1
24.2
243
24.4

Part Six

Chapter 25

25.1
25.2
25.3

Chapter 26

26.1
26.2
26.3
26.4

Chapter 27

27.1
27.2
273
27.4

Part Seven

Chapter 28

28.1
28.2
28.3
28.4
28.5

Defect Testing

Black-box testing
Structural testing
Interface testing

Static Verification

Program inspections
Mathematically based verification
Static analysis tools
Cleanroom software development

CASE

Computer-aided Software Engineering

CASE classification
Integrated CASE
The CASE life cycle

CASE Workbenches

Programming workbenches
Analysis and design workbenches
Testing workbenches
Meta-CASE workbenches

Software Engineering Environments

Integrated environments
Platform services
Framework services
PCTE

Management

Managing People

Cognitive fundamentals
Management implications
Project staffing

Group working

Working environments

463

466
471
476

483

484
488
493
496

503

505

507
511
521

529

531
535
538
540

545

548
550
552
560

565

567

568
573
576
578
584

Contents

xXv

xVi

Contents

Chapter 29

29.1
29.2
29.3
29.4

Chapter 30

30.1
30.2
30.3
30.4
30.5
30.6

Chapter 31

31.1
31.2
313
314
31.5

Part Eight

Chapter 32

32.1
322
323
324
325

Chapter 33

33.1
33.2
33.3
334

Chapter 34

34.1
34.2
343
344

References

Index

Software Cost Estimation

Productivity

Estimation techniques
Algorithmic cost modelling
Project duration and staffing

Quality Management

Process quality assurance
Quality reviews
Software standards
Documentation standards
Software metrics

Product quality metrics

Process Improvement

Process and product quality
Process analysis and modelling
Process measurement

The SEI process maturity model
Process classification

Evolution

Software Maintenance

The maintenance process
System documentation
Program evolution dynamics
Maintenance costs
Maintainability measurement

Configuration Management

Configuration management planning

Change management
Version and release management
System building

Software Re-engineering

Source code translation
Program restructuring
Data re-engineering
Reverse engineering

589

592
595
598
605

611

615
616
619
621
623
629

637

639
641
646
647
652

657

659

662
663
664
666
670

675

677
680
683
690

699

703
704
707
711

715

735

Part One
Introduction

The chapters in this introductory part introduce the topic of software
engineering and place it in the context of a system engineering process.
They emphasize that software engineering is a managed process by
including discussions of software and system engineering process models
and a short introduction to fundamentals of project management. Project
management is also discussed in more detail later in Part 7.

Contents
| Introduction 3
2 Computer-based System Engineering 23

3 Project Management 45

Introduction

Objectives

To define software engineering and to explain why it is important.

To introduce the concept of a software product and the attributes of
well-engineered software.

To describe the basic activities of the software engineering process and
to illustrate a number of generic software process models.

To explain why software process visibility is essential for process
management.

To explain why software engineers must consider their responsibilities to

the engineering profession.

Contents

1.1
1.2
1.3
1.4
1.5

Software products

The software process
Boehm'’s spiral model
Process visibility
Professional responsibility

13
16
18

