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PREFACE

This volume contains papers presented at the NSF/CBMS Conference on
Water Waves: Theory and Experiment. The five-day Regional Conference
was held on the main campus of Howard University from the 13" to the
180 of May 2008. Professor Harvey Segur was the principal lecturer of this
conference. He delivered lectures on aspects of the mathematical theory
of water waves. Professor Diane Henderson has designed experiments to
support and complement the lectures. Professor M. F. Mahmood was the
Principal Investigator (PI) and organizer of this conference.

The theory of water waves is appealing as a concrete prototype of a non-
trivial dynamical system — the system of partial differential equations is
nonlinear and its phase space is infinite-dimensional. If we neglect dissipa-
tion, then it is also Hamiltonian. It exhibits naturally several concepts that
have been developed in nonlinear dynamics and nonlinear wave propaga-
tion: linear and nonlinear instabilities, deterministic chaos, resonant triad
and quartet interactions, solitons and complete integrability. Both deter-
ministic and statistical approximations of water waves have been used fruit-
fully. Best of all, we can observe these concepts in physical experiments that
can be carried out without much special equipment.

We believe that the collected papers, by presenting important recent
developments, should offer a valuable source of inspiration for new entrants
in the area, including post-doctoral fellows and graduate students in pure
and applied mathematics, and established researchers in the field.
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GRAVITY INDUCED DISPERSION FOR NEARLY FLAT
VORTEX SHEETS

DANIEL SPIRN

School of Mathematics, University of Minnesota,
Minneapolis, MN 55455, USA

J. DOUGLAS WRIGHT

Department of Mathematics, Drexzel University,
Philadelphia, PA 19104, USA
E-mail: jdoug@moath.drezel.edu

Using techniques from the theory of oscillatory integrals, we prove rigorous
estimates which show that the linearization of the vortex sheet equations of
motion about a quiescent state disperse under certain circumstances. Such dis-
persion is only possible only through the joint effects of surface tension (which
damps high frequency modes) and gravitation (which damps low frequency
modes).

Keywords: vortex sheets; oscillatory integrals; water waves; dispersive esti-
mates.

1. Dispersive effects in vortex sheets

Consider the flow of a pair of two-dimensional ideal fluids which shear past
one another along an interface on which surface tension acts — that is, we
have a “vortex sheet” system. Suppose that gravity acts on this system and
that the lighter fluid is above the heavier. Also, suppose that the velocity
field is curl-free at all points in the fluids not on the interface. The fluids
cover all of R%. The equations of motion for this system are well-known

(e.g. [5]):
1
w + (u-Viu+ ;Vp + gk =0 in the fluid domain

u=Ve¢, A¢=0 in the fluid domain
[u-n] =0 on the surface

[p] = 7K on the surface.
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Here, u is the velocity field, p is pressure, k = (0,1)%, p is density, g is
gravitational acceleration, ¢ is the velocity potential, n is the upward unit
normal to the interface, K is curvature of the interface, 7 is the constant of
surface tension and [Q)] represents the jump of a quantity “Q” across the
interface. The scenario which occurs when upper fluid is replaced with a
vacuum is called the “water wave” problem.

The vortex sheet and water wave problems are typically referred to
as “dispersive systems.” One characteristic typical of dispersive systems is
that the amplitude of solutions decays at an algebraic rate, even though
the full system may conserves certain norms (e.g. [3]). The main purpose
of our work [13] is pin down in full technical detail when this sort of decay
should be expected for linearized vortex sheets and at what rate this decay
takes place. Estimates of this sort can be extremely useful for proving the
global-in-time existence® of solutions of the nonlinear problem (e.g. [2]), as
well as being of interest in and of themselves.

Since the velocity potential solves Laplace’s equation, one can refor-
mulate this problem entirely in terms of functions defined on the interface.
There are several ways to do this, and we choose to use a method developed
in [7]. The interface can be represented as a curve in R? parameterized by
arclength. Call this parameter «, and suppose that

f(a,t) = tangent angle w.r.t. horizontal of the interface at (a,t)
and
(e, t) = jump in tangential velocity at (a,t).

We omit the exact equations of motion in terms of 6 and ~; they can be
found in [1]. This system is in equilibrium when the two fluids shear past
one another along a perfectly flat interface. That is, when 6(a,t) = 0 and
v(a, t) = 4. Linearizing about this state results in the system:

0 = 2H(9ar)
2

72 A (1)

Oyy = 270260 + 7H(aa@) — 5707 — 240,

where H (the Hilbert tranform) is given by the singular integral
1 /
Hf(a) = —P.V./ He) 4
m R

/
o
a—ao
The constant A = (piower — Pupper)/ (Plower + Pupper) 1S positive.

#Local existence of solutions is known for arbitrary initial data, see [1, 8, 14], for instance.



Looking for plane wave solutions e?é@=w(€)t)y to (1) yields the disper-
sion relation (see [10])

w(@) =~ £ X(6)
with
2 2
X2(e) = rlef* - 1 (1 i ) € + Ag €] @)

Note that if A2(¢) < 0 at wave number £, then the dispersion relation is
imaginary and we expect exponential growth of that mode. Notice that
the first term of A\2(£) represents the contribution from surface tension,
the second that of shearing and the last comes from gravity. Importantly
the signs on surface tension and gravity terms are positive, while the shear
term is negative. Therefore we see that in the absence of surface tenstion,
A2(€) become negative for large wave numbers, and that in the absence of
gravitation the same is true for low wave numbers. That is to say disper-
sive decay can only occur if gravitation and surface tension are
sufficiently strong relative to the ambient shear.
More quantitatively, we have A\?(¢) > 0 for all £ when

o 2\ 2
o A

This condition guarantees there will be no exponential growth of solutions,
but it does not immediately demonstrate that decay occurs. To see this, we
first compute the solution of (1) by means of the Fourier transform. It is:

~ et ic1€sin(A(€)t) ~
e, 1) = et {(——m +oos(A(E)0)) Bo(©)

[€lsin(AE)) -
T (&)}

€12 (E)

_iclﬁsin(/\(f)t)
+ (-5

F(E, t) = eierst [Cl XE) nnetd(e)

N coswe)t)) %(e)] (4)

where ¢; = —A¥/4.



Thus estimating the amplitude of the solution boils down to estimating
operators of the form:

~

S(t)f = FleMo() ()] = /R (i EtNON (6 Fle)de.

(Here, the function o(£) represents the sundry multipliers that appear
in (4).) Such estimates fall within the purview of harmonic analysis; the
method of stationary phase is the typical way of controlling L® norms of
such oscillatory integrals. We have two concerns when estimating S(t)f.
The first is, at what rate does it decay (if at all)? The second is, what is
the least restrictive space in which we can place f7

Roughly speaking, the method of stationary phase says the following
(see [11]): Suppose on an interval [a, b] (possibly infinite) we have a point
&star (a stationary point) at which

h(j)(gstat) =0
for 7=1,...,n— 1 but that
h(")(fstat) # 0.

b o
/ elh(f)td€
a

The constant C' is proportional to (min(, ) [A(™|)
For our problem we need to control, for instance,

oo o0
/ gilEa+ME)D) g / git(rat A1) ge
0 0

uniformly in k = z/t. Supposing that the dispersive decay condition (3) is
satisfied, observe the following facts about A(£):

i) N(€) ~ &2 for € ~0.

i) N(€) ~ €Y% as € - .

Since X' (£) diverges near the origin and at infinity, there is a minimum
of N (§) some point &siqs. So if we have kK = Kgpar := — A (€star) then we
have:

Then

< Oy,

1/n

Kstat + Al(gstat) = )‘H(é‘stat) =0.

It happens that A"”’(€stqt) # 0. And so the stationary phase argument indi-
cates that this integral should decay like Ct~1/3. (Note that |kssq:| corre-
sponds to the rate of the slowest “ripple” one sees when one throws a pebble
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into a pond, see [12].) This is in fact the case, but there is the complication
that A7(&) ~ l{l—l/ % for € — oo. This means that the constant one gets
from the stationary phase argument is infinite if we really work with the
integral over all of R*.

We can bypass this problem by truncating our integrals in Fourier space,
(see [6]), and this leads us into the second issue: what space is f in? We
have (if o = 1)

IS()f] < +

/ (i(€a X Fg)de / ¢i(€a+AO) Fe)de]
|€|1<tB |€|>t8

Here B > 0 is a carefully chosen constant. We control the first integral
using the stationary phase argument outlined above. The second term can
be controlled if we assume some regularity of f. That is, if we know f(E)
decays for large £. If this decay is fast enough, since the second integral is
being taken over smaller and smaller sets as t increases, this integral decays
as well. Pursuing this course of action shows that (for o = 1).

IS fll Lo < 2SNl grrpe

The sundry multipliers o that appear in (4) may grow as £ goes to infinity,
and so their inclusion will correspondingly change the regularity required.
They do not change the fact that the rate of decay is t~1/3. We are able to
substantially reduce the regularity requirement on f by working in Besov
spaces, though the technical details are somewhat cumbersome for inclusion
here.

We conclude this note with the following remarks:
i) If one considers the water wave problem with no surface tension, the
decay rate increases from ¢ ~1/3 to t=1/2, though the regularity requirements
are more restrictive.
ii) Dispersive estimates like the ones described here are the foundation for
proving both smoothing estimates (see [4]) and (when combined with a pri-
orienergy estimates) Strichartz-type estimates (see [9]), both of importance
for passing to the nonlinear problem.
iii) Global existence results for the nonlinear problem typically require a
decay rate faster than t=!/2. This seems to spell doom for our long term
goal. However, if one considers three-dimensional fluids, the decay rate in-
creases by t~1/2. That is to say, to t~%/6 with surface tension and to ¢!
without.
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AN EXPERIMENTAL STUDY OF LOW-FREQUENCY
WAVES GENERATED BY RANDOM GRAVITY WAVES IN
SHOALING WATER

X. LIU*

Department of Mechanical Engineering, University of Maryland,
College Park, Maryland 20742, USA
* E-mail: zliu@umd.edu

Y. YANG and P. HUANG

First Institute of Oceanography, State of Oceanic Administration,
Qingdao, Shandong 266031, China

A laboratory study of the nonlinearity of random waves (the primary waves)
and low-frequency waves induced by the primary waves on inclined beaches is
presented. The experiments were carried out in a wave flume that is 65 m long,
1.2 m wide with a water depth of 0.7 m. Three plane beaches with different
slopes (1/20, 1/30 and 1/40) were used in separated experiments. Incident
primary waves with a Person-Moskowitz (PM) spectrum were mechanically
generated with significant wave height ranging from 0.047 to 0.125 m. The
time series of surface elevations at different water depths along the beach were
simultaneously recorded. Low-frequency waves are obtained from the measured
wave data with a low-pass filter. The results show that the primary waves on the
beach are highly nonlinear. The surface skewness and kurtosis, two statistical
measures of wave nonlinearity, are functions of a nondimensional parameter
Hs/d, where H; is the local significant wave height and d is the water depth.
The spectra of low-frequency waves in shoaling region are affected by beach
slope and the energy of incident primary waves. The energy ratio between
low-frequency waves and primary waves strongly correlates to the local surface
skewness. The growth (dissipation) rate of low-frequency waves on beaches is
controlled by the Iribarren number, £ = 8/(Ho/Lo)'/?, where f is the beach
slope, Hp and Lo are the significant wave height and wavelength of incident
primary waves, respectively.

Keywords: Wave nonlinearity, low-frequency waves, shoaling.

1. Introduction

Under a normal circumstance, incident seas and swells in deep water are
regarded as linear random processes. As these waves propagate into shallow



water, the wave profiles show strong vertical asymmetry with sharp crests
and round troughs. (As the wave approaches breaking, the profile also shows
a strong horizontal asymmetry which is not discussed in this study). The
probability distribution of sea surface elevations gradually deviates from
the Gaussian function with decreasing water depth. It is well known that
the non-Gaussian characteristics of sea surface elevations are related to the
nonlinear dynamics of random waves. Surface skewness and kurtosis, corre-
sponding to the 3rd and 4th order moments of the probability distribution
of surface elevation, respectively, can be used to statistically measure the
nonlinearity of waves (Phillips, 1961; Longuet-Higgins, 1963; Huang and
Long, 1980; Srokosz and Longuet-Higgins, 1986; and others).

The surface skewness and kurtosis of random gravity waves in shallow
water has been extensively studied in the laboratory and field. A laboratory
experiment of mechanically generated random waves over an inclined beach
with slope 1/20 was given by Mase (1989). The results of surface skewness
(A\3) versus d/Hy, where d is the water depth and Hy is the significant
wave height of incident random waves, show that as d/Hy decreases, A3
monotonically increases and achieves a maximum at the outer breakpoint
(the furthest offshore location of depth-induced wave breaking) and then
decreases in breaking zone. Similar results of the surface skewness evolution
on beaches were obtained in wind wave experiments ( Ding et al, 1994b)
and field measurements (Elgar and Guza; 1985, 1986) and compared with
the predictions of nonlinear shoaling wave models proposed by Ding et al
(1994a) and Freilich and Guza (1984), respectively.

Through the nonlinear wave-wave interaction, random gravity waves in
shallow water may generate low-frequency waves. Munk (1949) and Tucker
(1950) are among the first to observe low-frequency waves in the field near
the shore. Further field investigations of low-frequency waves under different
beach conditions have been given by a large number of researchers (Holman
et al, 1978; Guza and Thornton, 1985; Elgar et al, 1992; Herbers et al,
1994; Masselink, 1995; Ruessink, 1998; Sheremet et al, 2002; Henderson
and Bowen, 2002; Henderson et al, 2006 and others). General speaking,
it has been found that the generation of low-frequency waves in shoaling
region depends on the energy of incident gravity waves and the topography
of beaches. For a sloping beach, the propagation of low-frequency waves in
the shoreward direction is nonlinearly forced by incident short-wave groups
with a phase lag of 180 degrees. After being reflected by the shoreline,
low-frequency waves freely propagate in the seaward direction.

Longuet-Higgins and Stewart (1962, 1964) derived a theory to explain



the field observations of Munk and Tucker. Following the work of Longuet-
Higgins and Stewart, various models for second-order bound long waves in
shallow water with uneven bottoms have been developed (Gallagher, 1971;
Mei and Benmoussa, 1984; List, 1992; Madson et al, 1997; Janssen et
al, 2003 and others). Comparisons with observations have shown diverse
capabilities of these models in the prediction of low-frequency waves in
shoaling region. However, large differences between theory and laboratory
measurement still exist. For instance, the spectra predicted by the second-
order long wave theory are only half of those measured in wave tank (see
Fig.2 in Baldock and Huntly, 2002). Also, little attention has been given
to the correlation between low-frequency waves and the statistical measure
of gravity wave nonlinearity, for instance, the surface skewness mentioned
above.

Low-frequency waves in shoaling water may be generated by a time-
varying breakpoint mechanism proposed by Symonds et al (1982). In the
theory of Symonds et al, long waves are directly radiated from the break-
point position which oscillates with time. The frequency of the long waves
approximately equals the frequency of short-wave groups. The theory is
qualitatively supported by the laboratory experiments of Kostense (1984)
and extended by Schaffer (1993) with short wave forcing within the surf
zone.

A number of laboratory experiments of low-frequency waves on plane
beaches have been recently given by two groups of people (Baldock et al,
2000; Baldock and Huntley, 2002; Baldock, 2006; Janssen et al, 2003; Bat-
tjes et al, 2004; van Dongeren et al, 2007). In these experiments, long waves
were generated by the shoaling of incident gravity waves and/or the break-
ing of waves in group. Three types of incident gravity waves (bichromatic
waves, random waves with uniform phase distribution and transient-focused
waves) were used. Baldock and his coauthors (Baldock et al, 2000; Baldock
and Huntley, 2002; Baldock, 2006) provide some evidences for the break-
point generation mechanism. Battjes et al (2004) found that the shoaling
regimes for the low-frequency waves can be characterized by a normalized

beach slope parameter;
d: [g
==, /2 1
B=5/ 2

where d; is the beach slope, w is the frequency of low-frequency waves, g
is the acceleration due to gravity and d is the representative water depth.
For large values of 5 (> 0.3), the incoming low-frequency waves are weakly
enhanced, but strongly reflected from the shoreline . For small values of 3,



