eanogra phs on Appl |ed and Com putatlonal Mathe matlcs

Learnlng Theory

An Approxmatlon Theory Vlewpomt




LLearning Theory: An Approximation
Theory Viewpoint

FELIPE CUCKER
City University of Hong Kong

DING-XUAN ZHOU
City University of Hong Kong

=8 CAMBRIDGE

&P UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521865593

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2007
Printed in the United Kingdom at the University Press, Cambridge
A catalogue record for this publication is available from the British Library
Library of Congress Cataloging in Publication Data

Cucker, Felipe, 1958-
Learning theory: an approximation theory viewpoint/Felipe Cucker,
Ding-Xuan Zhou.
p. cm.
Includes bibliographical references and index.

ISBN-13: 978-0-521-86559-3 (hardback: alk. paper)
ISBN-10: 0-521-86559-X (hardback: alk. paper)

1. Computational learning theory. 2. Approximation theory. I. Zhou, Ding-Xuan. [1. Title.
Q325.7.C83 2007
006.3"1-dc22
2006037012

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party internet websites referred to in this publication, and does not
suarantee that any content on such websites is, or will remain, accurate or appropriate.



Foreword

This book by Felipe Cucker and Ding-Xuan Zhou provides solid mathematical
foundations and new insights into the subject called learning theory.

Some years ago, Felipe and I were trying to find something about brain
science and artificial intelligence starting from literature on neural nets. It was
in this setting that we encountered the beautiful ideas and fast algorithms of
learning theory. Eventually we were motivated to write on the mathematical
foundations of this new area of science.

I have found this arena to with its new challenges and growing number of
application, be exciting. For example, the unification of dynamical systems and
learning theory is a major problem. Another problem is to develop a comparat-
ive study of the useful algorithms currently available and to give unity to these
algorithms. How can one talk about the “best algorithm™ or find the most appro-
priate algorithm for a particular task when there are so many desirable features,
with their associated trade-offs? How can one see the working of aspects of the
human brain and machine vision in the same framework”

[ know both authors well. I visited Felipe in Barcelona more than 13 years
ago for several months, and when I took a position in Hong Kong in 1995, 1
asked him to join me. There Lenore Blum, Mike Shub, Felipe, and I finished
a book on real computation and complexity. I returned to the USA in 2001,
but Felipe continues his job at the City University of Hong Kong. Despite the
distance we have continued to write papers together. I came to know Ding-
Xuan as a colleague in the math department at City University. We have written
a number of papers together on various aspects of learning theory. It gives me
great pleasure to continue to work with both mathematicians. I am proud of our
joint accomplishments.

[ leave to the authors the task of describing the contents of their book. I will
give some personal perspective on and motivation for what they are doing.

1X



X Foreword

Computational science demands an understanding of fast, robust algorithmes.
The same applies to modern theories of artificial and human intelligence. Part of
this understanding is a complexity-theoretic analysis. Here I am not speaking of
a literal count of arithmetic operations (although that i1s a by-product), but rather
to the question: What sample size yields a given accuracy? Better yet, describe
the error of a computed hypothesis as a function of the number ot examples,
the desired confidence, the complexity of the task to be learned, and variants
of the algorithm. If the answer is given in terms of a mathematical theorem, the
practitioner may not find the result useful. On the other hand, it 1s important
for workers in the field or leaders in laboratories to have some background
in theory, just as economists depend on knowledge of economic equilibrium
theory. Most important, however, is the role of mathematical foundations and
analysis of algorithms as a precursor to research into new algorithms, and into
old algorithms in new and different settings.

[ have great confidence that many learning-theory scientists will profit from
this book. Moreover, scientists with some mathematical background will find
in this account a fine introduction to the subject of learning theory.

Stephen Smale
Chicago



Preface

Broadly speaking, the goal of (mainstream) learning theory is to approximate
a function (or some function features) from data samples, perhaps perturbed
by noise. To attain this goal, learning theory draws on a variety of diverse
subjects. It relies on statistics whose purpose is precisely to infer information
from random samples. It also relies on approximation theory, since our estimate
of the function must belong to a prespecified class, and therefore the ability
of this class to approximate the function accurately is of the essence. And
algorithmic considerations are critical because our estimate of the function 1s
the outcome of algorithmic procedures, and the efficiency of these procedures
is crucial in practice. Ideas from all these areas have blended together to form
a subject whose many successful applications have triggered its rapid growth
during the past two decades.

This book aims to give a general overview of the theoretical foundations of
learning theory. It is not the first to do so. Yet we wish to emphasize a viewpoint
that has drawn little attention in other expositions, namely, that of approxim-
ation theory. This emphasis fulfills two purposes. First, we believe it provides
2 balanced view of the subject. Second, we expect to attract mathematicians
working on related fields who find the problems raised in learning theory close
to their interests.

While writing this book, we faced a dilemma common to the writing of any
book in mathematics: to strike a balance between clarity and conciseness. In
particular, we faced the problem of finding a suitable degree of self-containment
for a book relying on a variety of subjects. Our solution to this problem consists
of a4 number of sections, all called “Reminders,” where several basic notions
and results are briefly reviewed using a unified notation.

We are indebted to several friends and colleagues who have helped us 1n
many ways. Steve Smale deserves a special mention. We first became interested
in learning theory as a result of his interest in the subject, and much of the

X1



X11 Preface

material in this book comes from or evolved from joint papers we wrote with
him. Qiang Wu, Yiming Ying, Fangyan Lu, Hongwei Sun, Di-Rong Chen,
Song Li, Luoqing Li, Bingzheng Li, Lizhong Peng, and Tiangang Lei regularly
attended our weekly seminars on learning theory at City University of Hong
Kong, where we exposed early drafts of the contents of this book. They, and
Jose Luis Balcazar, read preliminary versions and were very generous in their
feedback. We are indebted also to David Tranah and the staff of Cambridge
University Press for their patience and willingness to help. We have also been
supported by the University Grants Council of Hong Kong through the grants

CityU 1087/02P, 103303, and 103704.
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1

The framework of learning

1.1 Introduction

We begin by describing some cases of learning, simplified to the extreme, to
convey an intuition of what learning is.

Case 1.1 Among the most used instances of learning (although not necessarily
with this name) is linear regression. This amounts to finding a straight line that
best approximates a functional relationship presumed to be implicit in a set of
data points 1n RZ, {(x1,y1), (x2,¥2), .- -, (X Ym)} (Figure 1.1). The yardstick
used to measure how good an approximation a given line Y = aX + b i1s, 18
called least squares. The best line is the one that minimizes

Qa,b) =Y (i — ax; — b)”.
i=1

Figure 1.1



2 I The framework of learning

Case 1.2 Case 1.1 readily extends to a classical situation in science. namely,
that of learning a physical law by curve fitting to data. Assume that the law at
hand, an unknown function f : R — R, has a specific form and that the space
of all functions with this form can be parameterized by N real numbers. For
instance, if f is assumed to be a polynomial of degree d, then N = d + 1 and the
parameters are the unknown coefficients wy, ..., w, of f. In this case, finding
the best fit by the least squares method estimates the unknown f from a set
of pairs {(x1,v1),..., (xm, vin)}. If the measurements generating this set were
exact, then y; would be equal to f(x;). However, in general one expects the
values y; to be affected by noise. That is, y; = f (x;) + &, where ¢ is a random
variable (which may depend on x;) with mean zero. One then computes the
vector of coefficients w such that the value

m

d
Z(fw (xi) —yi)?,  with f,(x) = Z wix/

i=1 j=0

1s minimized, where, typically, m > N.In general, the minimum value above is
not 0. To solve this minimization problem, one uses the least squares technique,
a method going back to Gauss and Legendre that is computationally efficient
and relies on numerical linear algebra.

Since the values y; are affected by noise, one might take as starting point,
instead of the unknown f, a family of probability measures &, on R varying
with x € R. The only requirement on these measures is that for all x € R. the
mean of &, 1s f (x). Then y; is randomly drawn from Ex;. In some contexts the
x;, rather than being chosen, are also generated by a probability measure py
on R. Thus, the starting point could even be a single measure p on R x R —
capturing both the measure py and the measures ¢, for x € R — from which the
pairs (x;, y;) are randomly drawn.

A more general form of the functions in our approximating class could be
given by

N

fw) =D wighi(x),

=

where the ¢; are the elements of a basis of a specific function space, not
necessarily of polynomials.

Case 1.3 The training of neural networks is an extension of Case 1.2. Roughly
speaking, a neural network is a directed graph containing some Input nodes,
some output nodes, and some intermediate nodes where certain functions are
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computed. If X denotes the input space (whose elements are fed to the input
nodes) and Y the output space (of possible elements returned by the output
nodes), a neural network computes a function from X' to Y. The literature on
neural networks shows a variety of choices for X and Y, which can be continuous
or discrete. as well as for the functions computed at the intermediate nodes. A
common feature of all neural nets, though, is the dependence of these functions
on a set of parameters, usually called weights, w = {w;}jes. This set determines
the function f,, : X — Y computed by the network.

Neural networks are trained to learn functions. As in Case 1.2, there 1s a
target function f : X — Y, and the network is given a set of randomly chosen
pairs (X1, y1), - - - » (Xm» ym) in X x Y. Then, training algorithms select a set of
weights w attempting to minimize some distance from f,, to the target function
f:X—=>Y.

Case 1.4 A standard example of pattern recognition involves handwritten
characters. Consider the problem of classifying handwritten letters of the
English alphabet. Here, elements 1n our space X could be matrices with entries
in the interval [0, 1] — each entry representing a pixel in a certain gray scale of a

digitized photograph of the handwritten letter or some features extracted from
the letter. We may take Y to be

26 26
Y =4ye€ R | 3 = Z}\.;e; such that ZA,— = ]

i=1] =1

Here ¢; is the ith coordinate vector 1n R26_ each coordinate corresponding to
a4 letter. If A C Y is the set of points y as above such that 0 < A; < 1, for
i = 1.....26, one can interpret a point in A as a probability measure on the set
(A, B,C,...,%,Y,Z}. The problem is to learn the ideal function f : X — Y that
associates, to a given handwritten letter x, a linear combination of the ¢; with
coefficients {Prob{x = A},Prob{x = B},...,Prob{x = 7}}. Unambiguous
letters are mapped into a coordinate vector, and 1n the (pure) classification
problem f takes values on these e;. “Learning f” means finding a sufficiently
good approximation of f within a given prescribed class.

The approximation of f is constructed from a set of samples of handwritten
letters. each of them with a label in Y. The set {(x1,y1), ..., (Xm, ym)} of these
m samples is randomly drawn from X x ¥ according to a measure p on X X Y.
This measure satisfies p (X x A) = 1. In addition, in practice, it s concentrated
around the set of pairs (x,y) with y = ¢; for some 1 < i < 26. That 1s, the
occurring elements x € X are handwritten letters and not, say, a digitized image
of the Mona Lisa. The function f to be learned is the regression function f,, of p.
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That 1s, f,(x) is the average of the y values of {x} x Y (we are more precise
about p and the regression function in Section 1.2).

Case 1.5 A standard approach for approximating characteristic (or indicator)
functions of sets is known as PAC learning (from “probably approximately
correct”). Let 7' (the target concept) be a subset of R" and px be a probability
measure on R" that we assume is not known in advance. Intuitively, a set
5§ C R" approximates 7" when the symmetric difference SAT = (S \ T) U
(T"\ §) 1s small, that is, has a small measure. Note that if fg and fr denote the
characteristic functions of S and T, respectively, this measure, called the error
of S, 18 [pa [fs — fr|dpx . Note that since the functions take values in {0, 1}.
only this integral coincides with fR” (fs — fr)*dpyx.

Let C be a class of subsets of R” and assume that 7 € C. One strategy for
constructing an approximation of 7" in C is the following. First, draw points
X1,...,Xx,m € R" according to py and label each of them with 1 or () according
to whether they belong to 7. Second, compute any function fs : R” — {0, 1},
fs € C, that coincides with this labeling over {xi, ..., x,,}. Such a function will
provide a good approximation S of 7 (small error with respect to py) as long
as m 1s large enough and C is not too wild. Thus the measure py is used in both
capacities, governing the sample drawing and measuring the error set SAT.

A major goal in PAC learning is to estimate how large m needs to be to obtain
an & approximation of 7" with probability at least 1 — § as a function of & and §.

The situation described above is noise free since each randomly drawn point
xi € R" 1s correctly labeled. Extensions of PAC learning allowing for labeling
mistakes with small probability exist.

Case 1.6 (Monte Carlo integration) An early instance of randomization in
algorithmics appeared in numerical integration. Let f : [0, 1]" — R. One way
of approximating the integral | cero.1J (¥) dx consists of randomly drawing
points xi,...,x; € [0, 1]" and computing

m

‘ |
Iy (f) = % ;f(-’f;)

Under mild conditions on the regularity of f, 1,,(f) — [ f with probability I;
that 1s, for all € > 0,

Iim Prob { LnkF) —/ fx)dx| > 8} — 0.
x€[0,1]”

mM—> 00 --1'[ i ...Xm

Again we find the theme of learning an object (here a single real number,
although defined in a nontrivial way through f) from a sample. In this case
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the measure governing the sample is known (the measure in [0, 1]" inherited
from the standard Lebesgue measure on R"), but the same idea can be used
for an unknown measure. If px is a probability measure on X C R", a
domain or manifold, 7,,(f) will approximate [ _, f(x)dpx for large m with
high probability as long as the points xi, . . ., X, are drawn from X according to
the measure py . Note that no noise is involved here. An extension of this idea
to include noise is, however, possible.

A common characteristic of Cases 1.2-1.5 is the existence of both an
“unknown” function f : X — Y and a probability measure allowing one
to randomly draw points in X x Y. That measure can be on X (Case 1.5),on Y
varying with x € X (Cases 1.2 and 1.3), or on the product X x ¥ (Case 1.4). The
only requirement it satisfies is that, if for x € X a pointy € Y can be randomly
drawn, then the expected value of y 1s f (x). That 1s, the noise 1s centered at zero.
Case 1.6 does not follow this pattern. However, we have included it since it is
a well-known algorithm and shares the flavor of learning an unknown object
from random data.

The development in this book, for reasons of unity and generality, is based on
a single measure on X x Y. However, one should keep in mind the distinction
between “inputs” x € X and “outputs” y € Y.

1.2 A formal setting

Since we want to study learning from random sampling, the primary object in
our development is a probability measure p governing the sampling that 1s not
known 1n advance.

Let X be a compact metric space (e.g., a domain or a manifold in Euclidean
space) and Y = IR¥, For convenience we will take k = 1 for the time being. Let
o be a Borel probability measure on Z = X x Y whose regularity properties
will be assumed as required. In the following we try to utilize concepts formed
naturally and solely from X, Y, and p.

Throughout this book, if & is a random variable (i.e., a real-valued function
on a probability space Z), we will use E(§) to denote the expected value (or
average, or mean) of & and o2 (&) to denote its variance. Thus

EE) = | &Gdp and o) =E(E —E))?) = EE?) — (E@#)).

zel

A central concept in the next few chapters is the generalization error (or
least squares error or, if there is no risk of ambiguity, simply error) ot f, for
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f:X — Y, dehined by
) =& = [ (0 -»dp.
Z

For each inputx € X and outputy € Y, (f (x) —y)? is the error incurred through
the use of f as a model for the process producing y from x. This 1s a local error.
By integrating over X X Y (w.r.t. p, of course) we average out this local error
over all pairs (x,y). Hence the word “error” for £(f).

The problem posed 1s: What is the f that minimizes the error £(f ) ? To answer
this question we note that the error £(f ) naturally decomposes as a sum. For
every x € X, let p(y|x) be the conditional (w.r.t. x) probability measure on Y.
Let also py be the marginal probability measure of p on X, that is, the measure
on X defined by px (§) = p(zr_'('S)), where 7 : X X Y — X is the projection.
For every integrable function ¢ : X x ¥ — R a version of Fubini’s theorem
relates p, p(v|x), and pyx as follows:

f (P(x,.v)dp=f ([ gﬂ(xay)dp(,vlﬂt')) dpx .
XxY X Y

This “breaking” of p into the measures p(y|x) and py corresponds to looking
at Z as a product of an input domain X and an output set Y. In what follows,
unless otherwise specified, integrals are to be understood as being over p, p (y|x)

or py .
Define f, : X — Y by

falx) = fyydpQVIX)-

The function f, is called the regression function of p. For each x € X, f,(x) is
the average of the y coordinate of {x} x ¥ (in topological terms, the average of y
on the fiber of x). Regularity hypotheses on p will induce regularity properties
onf,.

We will assume throughout this book that f, is bounded .

Fix x € X and consider the function from Y to IR mapping y into (y —f,(x)).
Since the expected value of this function is 0, its variance is

a%ﬂ:]@—ﬁmﬁwwm.
Y

Now average over X, to obtain

.'j

cr[‘;:/ o> (x)dpx = E(fy).
X
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S 5 oA :
The number o 5 18 a measure of how well conditioned p is, analogous to the

notion of condition number in numerical linear algebra.

Remark 1.7

(i) It is important to note that whereas p and f,, are generally “unknown,” px
is known in some situations and can even be the Lebesgue measure on X
inherited from Euclidean space (as in Cases 1.2 and 1.6).

(ii) In the remainder of this book, if formulas do not make sense or co appears,

then the assertions where these formulas occur should be considered
vacuous.

Proposition 1.8 Foreveryf : X — Y,

E(f) = fX (f (0) — fo(x)? dpx + 02

Proof From the definition off,(x) foreachx € X, [, (f,(x)—y) = 0. Therefore,

£(f) = fz (F1) —Fo () +Fox) — )2

=[(f(x)—fp(x))2+f /(f]o(x) —y)°
X x Jy

12 ]X f,, (F () — £ @) (o () — )
= fx(f(x)—J‘b(.r))2+0§+2fx(f(x) —fb(fr))fy(fp(x)—y)
:[(f(x) —ﬁ;(x))“rffﬁ-

X

.l

The first term on the right-hand side of Proposition 1.8 provides an average
(over X ) of the error suffered from the use of f as a model for f,. In addition,
since crg is independent of f, Proposition 1.8 implies that f, has the smallest
possible error among all functions f : X — Y. Thus Jg represents a lower
bound on the error £ and it is due solely to our primary object, the measure p.

Thus, Proposition 1.8 supports the following statement:

The goal is to “learn” (i.e., to find a good approximation of) f, from random
samples on Z.

| Throughout this book, the square Il denotes the end of a proof or the fact that no proof is given.



