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Preface

This book has expanded from our attempt to construct a general theory of hyper-
geometric functions and can be regarded as a first step towards its systematic
exposition. However, this step turned out to be so interesting and important, and
the whole program so overwhelming, that we decided to present it as a separate
work. Moreover, in the process of writing we discovered a beautiful area which
had been nearly forgotten so that our work can be regarded as a natural continuation
of the classical developments in algebra during the 19th century.

We found that Cayley and other mathematicians of the period understood
many of the concepts which today are commonly thought of as modern and quite
recent. Thus, in an 1848 note on the resultant, Cayley in fact laid out the foundations
of modern homological algebra. We were happy to enter into spiritual contact with
this great mathematician.

The place of discriminants in the general theory of hypergeometric functions
is similar to the place of quasi-classical approximation in quantum mechanics.
More precisely, in [GGZ] [GKZ2] [GZK 1] a general class of special functions was
introduced and studied, the so-called A-hypergeometric functions. These func-
tions satisfy a certain holonomic system of linear partial differential equations (the
A-hypergeometric equations). The A-discriminant, which is one of our main ob-
jects of study, describes singularities of A-hypergeometric functions. According
to the general principles of the theory of linear differential equations, these singu-
larities are governed by the vanishing of the highest symbols of A-hypergeometric
equations. The relation between differential operators and their highest symbols
is the mathematical counterpart of the relation between quantum and classical me-
chanics; so we can say that hypergeometric functions provide a “quantization” of
discriminants.

In our work on hypergeometric functions we found connections with many
questions in algebra and combinatorics. We hope that this book brings to light
some of these connections. One of the algebraic concepts which seems to us
particularly important is that of hyperdeterminants (analogs of determinants for
multi-dimensional “matrices.”) After rediscovering hyperdeterminants in connec-
tion with hypergeometric functions, we found that they too, had been introduced by
Cayley in the 1840s. Unfortunately, later on, the study of hyperdeterminants was
largely abandoned in favor of another, more straightforward definition (cf. [P]).
The only other work on hyperdeterminants of which we are aware is an important
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paper by Schlifli [Schl]. In this volume we give a detailed treatment of hyperde-
terminants with the hope of attracting the attention of other mathematicians to this
subject.

We would like to thank S.I. Gelfand, M.I. Graev and V.A. Vassiliev, who,
through discussions and collaboration, have much influenced our understanding
of the vast and beautiful field of hypergeometric functions.
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Introduction

I

In this book we study discriminants and resultants of polynomials in several vari-
ables. The most familiar example is the discriminant of a quadratic polynomial
f(x) =ax*+bx +c. Thisis

A(f) = b* — 4ac, (D)

which vanishes when f(x) has a double root.

More generally, we can consider a polynomial f(xy, ..., x;) of degree < d
in % variables. An analog of a multiple root for f is a point where f vanishes
together with all its first partial derivatives df/dx;. The discriminant A(f) is a
polynomial function in the coefficients of f which vanishes whenever f has such
a “multiple root.” The existence of A is not quite trivial; however, it can be shown
that A(f) exists and is unique up to sign if we require it to be irreducible and to
have relatively prime integer coefficients. For instance, the discriminant of a cubic
polynomial in one variable (k = 1, d = 3) is given by ‘

Aag+arx +axx* +a3x?) = alza% —4afa3 — 4a0a§ —27a(2)a§ + 18apaaraz. (2)

There is a subtle point in the definition of A(f): that is, A(f) depends not
only on f but also on the choice of a degree bound d. For instance, the formula
(2) applied to a quadratic polynomial gives a different expression from (1). With
this in mind, we introduce the following more general version of a discriminant.
Let A be a finite set of monomials in k variables, and let C* denote the space of all
polynomials with complex coefficients all of whose monomials belong to A. The
A-discriminant A o(f) is an irreducible polynomial in the coefficients of f € C#
which vanishes whenever f has a multiple root (xy, ..., xi) with all x; # O (the
last condition is added to be able to ignore trivial multiple roots which can appear
if all monomials from A have high degree). The A-discriminant will be one of our
main objects of study.

The notion of the A-discriminant includes as special cases several fundamental
algebraic concepts. If we take A = {1, x,...,x", y, yx,..., yx"}, for example,
then a typical polynomial from C# has the form f (x) + yg(x). Its A-discriminant
is the resultant of f and g: it vanishes whenever f and g have a common root.

More generally, the resultant of & + 1 polynomials fy, ..., fi in k variables
is defined as an irreducible polynomial in the coefficients of fy,..., fx, which
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vanishes whenever these polynomials have a common root. The resultant can be
treated as a special case of the A-discriminant of an auxiliary polynomial fy(x) +
T i fix), x=(x. . x0).

Another important example occurs when A consists of 7> monomials x; Yjs
i,j =1,...,n. Atypical polynomial from C* is now a bilinear form f(x, y) =
> a;jx;yj whose A-discriminant is the determinant of the matrix ||a;; ||.

The last example has a natural generalization: we can take A as the set of all
multilinear monomials in three or more groups of variables. An element f € C*
(i.e., a multilinear form) is represented by a higher-dimensional “matrix” ||a;, ;. |-
Thus the A-discriminant A4 in this case is a polynomial function of a “matrix”
which extends the notion of a determinant. Following Cayley [Cal], we call this
A4 the hyperdeterminant of ||a;, ; ||. For example, the hyperdeterminant of a
2 x 2 x 2 matrix |la;j|l, i, j, k =0, 1, is given by

2 2 2 2 2 2 2 2
(agooai1n + 9p01a110 + 0109701 + 40119700)
—2(ac00G001a110a111 + A000d01041019111 + Q000@01121004111 + G001301041018110

+a001201181108100 + Go10G01141014100) + 4(Apoodo11a101G110 + Ao01d01041004111)-

The study of hyperdeterminants was initiated by Cayley [Cal] and Schlifli [Schl]
but then was largely abandoned for 150 years. We present a treatment of hyperde-
terminants in Chapter 14,

I

Let V4 = {f € C* : A(f) = 0} be the hypersurface in the space of
polynomials consisting of polynomials with vanishing A-discriminant. We shall
be mainly concerned with the following two closely related problems:

(a) the study of the geometric properties of the hypersurface V;
(b) finding an explicit algebraic expression of the discriminant A 4.

To illustrate the importance of problem (a), consider the special case when
A consists of all monomials in xj, ..., x; of a given degree d. Every f € C*
(i.e., a homogeneous form of degree d) defines a hypersurface {f = 0} in the
projective space P*~!. It is easy to see that V4 consists exactly of those f for
which the hypersurface { f = 0} is singular. Therefore the complement C* — V4
parametrizes all smooth hypersurfaces of a given degree in the projective space.
To understand the geometric structure of C* — V, is an important instance of the
general moduli problem in algebraic geometry.

Equally important is the situation over the real numbers. Hilbert’s 16th prob-
lem (classifying isotopy types of smooth real hypersurfaces of given degree d)
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amounts to the study of connected components of R* — V,, the space of real
polynomials with a non-vanishing discriminant.

Problem (b) has a long and glorious history. Explicit formulas for discrim-
inants and resultants were the focus of several remarkable mathematicians in the
last century. Many ingenious formulas were found by Cayley, Sylvester and their
followers. However, we are still very far from a complete understanding of dis-
criminants. For instance, an explicit polynomial expression for A4 is known only
in a very limited number of special cases. Such formulas would be of great im-
portance for the problem of finding explicit solutions of systems of polynomial
equations. Problems of this kind are of interest not only for theoretical reasons,
but are encountered more and more on a practical level because of the progress in
computer technology.

III
We will use three main approaches in our study of discriminants and resultants:
e a geometric.approach via projective duality and associated hypersurfaces;

e analgebraic approach via homological algebra and determinants of complexes
(Whitehead torsion);

e a combinatorial approach via Newton polytopes and triangulations.

The geometric approach to discriminants is based on the observation that the
discriminantal variety V4 is projectively dual to a certain variety X, defined by
a simple parametric representation. For example, if A consists of all monomials
of degree d in k variables then X4 is the projective space PX~! in its Veronese
embedding. In the general case, X4 is the projective toric variety associated with
A. The notion of the projectively dual variety X" makes sense for an arbitrary
projective variety X C P"~!: itis the closure of the set of all hyperplanes in P"~!
which are tangent to X at some smooth point. Thus the problem of finding the
discriminant is a particular case of a more general geometric problem: find the
equation(s) of XV. We call this equation (in the case where XV is a hypersurface)
the X-discriminant.

Although the resultants can be formally treated as discriminants of a special
kind (see above), they have their own interesting geometric meaning. As for dis-
criminants, we can associate the resultant to any projective variety X c P"~ L.
Instead of XV, we now consider the associated hypersurface Z(X) of X. If
dim X = k — 1 then Z(X) is the locus of all codimension k projective subspaces
in P*~! which meet X. The equation of Z(X) in the appropriate Grassmannian
is the classical Chow form of X. This can be represented as a polynomial in the
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coefficients of k linear forms defining a subspace from Z(X). We call this poly-
nomial the X-resultant (the classical resultant of polynomials in several variables
is a special case of this construction).

In Part I of this book we examine X-discriminants and X -resultants (or, in
other words, projective duality and associated hypersurfaces) in the general context
of projective geometry.

IV

The algebraic approach to discriminants and resultants which we use here goes
back to Cayley. In his breathtaking 1848 note [Ca4] * he outlined a general method
of writing down the resultant of several polynomials in several variables. We were
very surprised to find that Cayley introduced in this note several fundamental
concepts of homological algebra: complexes, exactness, Koszul complexes, and
even the invariant now sometimes called the Whitehead torsion or Reidemeister-
Franz torsion of an exact complex. The latter invariant is a natural generalization
of the determinant of a square matrix (which itself was a rather recent discovery
back in 1848!), so we prefer to call it the determinant of a complex. Using this
terminology, Cayley’s main result is that the resultant is the determinant of the
Koszul complex.

Cayley’s method is very general: without much effort it can be adapted to
the study of X-discriminants and X -resultants associated as above to an arbitrary
projective variety X. To get more detailed information, we complement Cay-
ley’s method with more recent tools such as coherent sheaves, perverse sheaves,
microlocal geometry and D-modules.

\%

Under a combinatorial approach we treat polynomials in the most naive way:
as sums of monomials. To the best of our knowledge, there were no attempts in
the classical literature to understand discriminants and resultants from this point
of view, i.e., to describe which monomials can appear in them and with which
coefficients. This is probably because the number of occurring monomials is
usually very large. For example, the discriminant of a cubic form in three variables
contains 2040 monomials (we are obliged to S. Duzhin who first showed it to us
some years ago). At first glance, there seems to be no structure at all in these
monomials and their coefficients. However, such a structure exists! The “magic
crystal” that brings it to light is the concept of a Newton polytope.

Every monomial x}” - - - x%» in n variables can be visualized as a lattice point
(w1, ..., wy) in R". The Newton polytope N (F) of a polynomial F(xy, ..., x,) is

* This note is reproduced as an appendix in this book
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the convex hull in R" of all lattice points representing monomials occurring in F.
The structure of this polytope is deeply related to the geometry of the hypersurface
{(F = 0}. In fact, the asymptotic behavior of this hypersurface “at infinity” is
controlled by the extreme monomials of F which correspond to the vertices of
N(F).

The notion of a Newton polytope goes back to Newton, and made some iso-
lated appearances in the 19th century, cf. [Br 2]. More recently, some spectacular
applications of Newton polytopes to classical algebraic problems (the number of
solutions of systems of polynomial equations) have been found by A. Kouch-
nirenko, D. Bernstein, A. Khovansky [Ber], [Kou], [Kh]. We make use of these
results in Part IL.

It was a very surprising discovery for us when we realized that the Newton
polytopes of A-discriminants admit a very nice combinatorial description. We
recall that A is a finite set of monomials in k variables. As before, we represent
the monomials from A as lattice points in R*. Hence we can consider the convex
hull Q € R* of the set A. Our main result (which is the central point of Part II)
is a description of the Newton polytope N(A,) in terms of Q and A. Roughly
speaking, it turns out that vertices of N(A,) (i.e., extreme monomials in the A-
discriminant) correspond to some triangulations of Q into simplices all of whose
vertices lie in A.

The extreme monomial in A4 corresponding to a triangulation T of Q is
determined explicitly once we know all the simplices in 7 and their volumes. The
coefficient of this monomial is the product of numbers of the form V,.V" where the V;
are the volumes of the simplices of 7" under suitable normalization. This provides
an explanation of such coefficients as 4 = 22 or 27 = 3 in the formulas (1) and
(2) above. The expression [] KV (or, rather, its logarithm )_ V;log (V;)) brings
to mind the entropy of a probability distribution. It would be interesting to find a
“probabilistic” reason for its appearance in discriminants. Even more intriguing
is the fact that this appearance is not isolated—entropy-like expressions enter the
formula for the rational uniformization of the variety V, (see Chapter 9).

To illustrate the above description, consider the simplest A-discriminant of a
quadratic polynomial ax? + bx + ¢ given by (1). Here A consists of 0, 1,2 € Z,
the polytope Q is the segment [0, 2], with its two “triangulations”. The first one
consists of just one 1-dimensional “simplex” [0, 2] of length 2, corresponding to
the term —4ac in (1). The second “triangulation” consists of two “simplices”:
[0, 1] and [1, 2], corresponding to the term b?. Similarly, for the case of a cubic
polynomial in one variable, we have A = {0, 1,2,3} and Q = [0,3]. There
are now 4 triangulations of Q which correspond to the first four terms in the
discriminant (2). Our final example is the determinant of a 2 x 2 matrix given by
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a familiar formula A = ad — bc. We have already seen that this is also a special
case of an A-discriminant. The set A now consists of the vertices of a square Q;
the terms ad and —bc correspond to two triangulations of Q by means of one of
its diagonals.

The description of the Newton polytope of A 4 leads to a purely geometric
notion of the secondary polytope L(A) of a point configuration A. This is a
polytope whose vertices correspond to the so-called coherent triangulations of the
convex hull Q of A. Secondary polytopes and their generalizations (fiber polytopes
introduced and studied by Billera and Sturmfels [BS1], [BS2]) are quite interesting
by themselves. A triangulation of a polytope Q can be viewed as a discrete analog
of a Riemannian metric on Q. So X (A) can be seen as a kind of combinatorial
Teichmiiller space parametrizing such metrics. This reminds us of the work of
Penner [Pen] who constructed a combinatorial model for the Teichmiiller space of
a Riemann surface in terms of its curvilinear triangulations.

VI

As mentioned in the Preface, our interest in the subject arose from the theory
of hypergeometric functions [Ge] [GGZ] [GKZ2] [GZK1]. Although this theory
is not formally present in the book, its influence is felt in several places. In a
sense, one can say that hypergeometric functions provide a “quantization” of the
discriminants. More precisely, to a finite set of monomials A, we associate a certain
holonomic system of differential equations on the space C* whose solutions are
the so-called A-hypergeometric functions. The highest symbols of the equations
of this system define, in the cotangent bundle of C*, the characteristic variety of
the system. One of the components of this variety, when projected back to C* is
the discriminantal hypersurface V, and the projections of other components are
similar hypersurfaces associated to subsets of A.

The notion of a coherent triangulation, which plays such an essential part in
our combinatorial approach to discriminants, was first brought to our attention by
the analysis of A-hypergeometric functions. In fact, every coherent triangulation of
the convex hull Q of A produces an explicit basis in the space of A-hypergeometric
functions. This basis consists of a finite number of power series whose coefficients
are products of the values of the Euler I'-function.

viI

The book is subdivided into three parts. The first part is devoted to discrim-
inants and resultants associated with arbitrary projective subvarieties. Most of
the results here are classical but, to the best of our knowledge, have been never
systematically treated in a book. Chapter 1 discusses projective duality. Chapter
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~1

2 introduces the Cayley method of expressing the discriminant as the determinant
of a complex. Chapter 3 presents a parallel treatment of the resultants. Finally,
Chapter 4 gives an exposition of the theory of Chow varieties (parameter spaces
for projective subvarieties of given dimension and degree).

In Part II we consider A-discriminants and A-resultants. Geometrically, this
corresponds to the specialization of the setting of Part I to projective toric va-
rieties. We review toric varieties in Chapter 5 and the work of Bernstein and
Kouchnirenko on Newton polytopes in Chapter 6. In Chapter 7 we present our
main combinatorial-geometric construction: the secondary polytopes. In Chapters
8 — 11 this construction is related to Newton polytopes of A-discriminants and A-
resultants. The main link between discriminants and triangulations is the so-called
principal A-determinant. This is a certain product of discriminants whose Newton
polytope is precisely the secondary polytope £ (A). For discriminants themselves,
the correspondence between triangulations and the vertices of the Newton polytope
is, in general, many-to-one.

Finally, Part III is devoted to the most classical examples of discriminants
and resultants. The case of polynomials in one variable is treated in Chapter 12.
Surprisingly, the point of view of Newton polytopes leads to new results even
in this case. We treat the case of forms in several variables in Chapter 13, and
hyperdeterminants in Chapter 14.

Geometrically, all of these examples correspond to varieties which are prod-
ucts of projective spaces P/ x --- x P¥ in a suitable projective embedding.

VIII

We did not attempt in this volume to coliect all that is known about discrim-
inants and resultants. The choice of material reflects both personal interests and
the expertise of the authors.

Let us give a brief overview of some of the developments not included here
but closely related to our subject. The following list is by no means complete.

First of all, an old tradition going back to Cayley and Sylvester, includes
discriminants and resultants in the general context of the invariant theory of the
group GL(n). This approach involves expressing discriminants and resultants
using the symbolic method (see e.g., [Go]). Our combinatorial approach focuses
on the monomials, and thus is based on the action of the algebraic torus (C*)", not
on the action of the whole group GL(n).

Second, the study of discriminants and resultants constitutes only a part of
Elimination Theory. There are other aspects of this theory which we do not dis-
cuss. Among those, we can mention the study of certain resultant ideals using



