Algorithms
INC++

Parts 1-4

FUNDAMENTALS
DATA STRUCTURES
SORTING
SEARCHING

e
l

ROBERT SEDGEWICK

with C++ consulting by Christopher J.Van Wyk

IO

1036328

Algorithms

A
vy

ADDISON-WESLEY

THIRD EDITION
in C++

PARTS 1-4

FUNDAM
DATA STR
SORTING
SEARCHI

Robert Sedgewick

Princeton University

Y < J
Boston ¢ San Francisco * New York ¢ Toronto * Montreal \ :f“:ﬂ =) /
n e | <

London ¢ Mun

ich e

Paris ¢ Madrid

Capetown ¢ Sydney ¢ Tokyo * Singapore * Mexico City —g

Publishing Partner: Peter S. Gordon
Production Editor: Amy Willcutt

Library of Congress Catalog Card Number: 98-71799
ISBN 0-201-35088-2

The programs and applications presented in this book have been in-
cluded for their instructional value. They have been tested with care,
but are not guaranteed for any particular purpose. The publisher nei-
ther offers any warranties or representations, nor accepts any liabilities
with respect to the programs or applications.

Reproduced by Addison-Wesley from camera-ready copy supplied by
the author.

Copyright © 1998 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the
United States of America.

Text printed on recycled and acid-free paper.
ISBN 0201350882

9 1011121314 CRS 0504 03 02

9th Printing November 2002

Preface

HIS BOOK IS intended to survey the most important computer

algorithms in use today, and to teach fundamental techniques to
the growing number of people in need of knowing them. It can be
used as a textbook for a second, third, or fourth course in computer
science, after students have acquired basic programming skills and fa-
miliarity with computer systems, but before they have taken specialized
courses in advanced areas of computer science or computer applica-
tions. The book also may be useful for self-study or as a reference for
people engaged in the development of computer systems or applica-
tions programs, since it contains implementations of useful algorithms
and detailed information on these algorithms’ performance character-
istics. The broad perspective taken makes the book an appropriate
introduction to the field.

I have completely rewritten the text for this new edition, and I
have added more than a thousand new exercises, more than a hun-
dred new figures, and dozens of new programs. I have also added
detailed commentary on all the figures and programs. This new ma-
terial provides both coverage of new topics and fuller explanations
of many of the classic algorithms. A new emphasis on abstract data
types throughout the book makes the programs more broadly useful
and relevant in modern programming environments. People who have
read old editions of the book will find a wealth of new information
throughout; all readers will find a wealth of pedagogical material that
provides effective access to essential concepts.

Due to the large amount of new material, we have split the new
edition into two volumes (each about the size of the old edition) of
which this is the first. This volume covers fundamental concepts, data
structures, sorting algorithms, and searching algorithms; the second
volume covers advanced algorithms and applications, building on the
basic abstractions and methods developed here. Nearly all the material
on fundamentals and data structures in this edition is new.

1

w

PREFACE

This book is not just for programmers and computer-science stu-
dents. Nearly everyone who uses a computer wants it to run faster
or to solve larger problems. The algorithms in this book represent
a body of knowledge developed over the last 50 years that has be-
come indispensible in the efficient use of the computer, for a broad
variety of applications. From N-body simulation problems in physics
to genetic-sequencing problems in molecular biology, the basic meth-
ods described here have become essential in scientific research; and
from database systems to Internet search engines, they have become
essential parts of modern software systems. As the scope of computer
applications becomes more widespread, so grows the impact of many
of the basic methods covered here. The goal of this book is to serve
as a resource for students and professionals interested in knowing and
making intelligent use of these fundamental algorithms as basic tools
for whatever computer application they might undertake.

Scope

The book contains 16 chapters grouped into four major parts: fun-
damentals, data structures, sorting, and searching. The descriptions
here are intended to give readers an understanding of the basic prop-
erties of as broad a range of fundamental algorithms as possible. The
algorithms described here have found widespread use for years, and
represent an essential body of knowledge for both the practicing pro-
grammer and the computer-science student. Ingenious methods rang-
ing from binomial queues to patricia tries are described, all related to
basic paradigms at the heart of computer science. The second volume
consists of four additional parts that cover strings, geometry, graphs,
and advanced topics. My primary goal in developing these books has
been to bring together the fundamental methods from these diverse ar-
eas, to provide access to the best methods known for solving problems
by computer.

You will most appreciate the material in this book if you have had
one or two previous courses in computer science or have had equivalent
programming experience: one course in programming in a high-level
language such as C++, Java, or C, and perhaps another course that
teaches fundamental concepts of programming systems. This book
is thus intended for anyone conversant with a modern programming

language and with the basic features of modern computer systems.
References that might help to fill in gaps in your background are
suggested in the text.

Most of the mathematical material supporting the analytic results
is self-contained (or is labeled as beyond the scope of this book), so
little specific preparation in mathematics is required for the bulk of the
book, although mathematical maturity is definitely helpful.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. There is sufficient coverage of basic material for the
book to be used to teach data structures to beginners, and there is
sufficient detail and coverage of advanced material for the book to
be used to teach the design and analysis of algorithms to upper-level
students. Some instructors may wish to emphasize implementations
and practical concerns; others may wish to emphasize analysis and
theoretical concepts.

I am developing a variety of course materials for use with this
book, including slide masters for use in lectures, programming as-
signments, homework assignments and sample exams, and interactive
exercises for students. These materials will be accessible via the book’s
home page at http://www.awl.com/cseng/titles/0-201-35088-2.

An elementary course on data structures and algorithms might
emphasize the basic data structures in Part 2 and their use in the
implementations in Parts 3 and 4. A course on design and analysis of
algorithms might emphasize the fundamental material in Part 1 and
Chapter S, then study the ways in which the algorithms in Parts 3
and 4 achieve good asymptotic performance. A course on software
engineering might omit the mathematical and advanced algorithmic
material, and emphasize how to integrate the implementations given
here into large programs or systems. A course on algorithms might
take a survey approach and introduce concepts from all these areas.

Earlier editions of this book have been used in recent years at
scores of colleges and universities around the world as a text for the
second or third course in computer science and as supplemental reading
for other courses. At Princeton, our experience has been that the

vi

PREFACE

breadth of coverage of material in this book provides our majors with
an introduction to computer science that can be expanded upon in
later courses on analysis of algorithms, systems programming and
theoretical computer science, while providing the growing group of
students from other disciplines with a large set of techniques that these
people can immediately put to good use.

The exercises—most of which are new to this edition—fall into
several types. Some are intended to test understanding of material
in the text, and simply ask readers to work through an example or
to apply concepts described in the text. Others involve implementing
and putting together the algorithms, or running empirical studies to
compare variants of the algorithms and to learn their properties. Still
others are a repository for important information at a level of detail
that is not appropriate for the text. Reading and thinking about the
exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put to work algorithms to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on a
consistent set of examples.

Because we work with real code, rather than write pseudo-code,
you can put the programs to practical use quickly. Program listings
are available from the book’s home page. You can use these working
programs in many ways to help you study algorithms. Read them
to check your understanding of the details of an algorithm, or to
see one way to handle initializations, boundary conditions, and other
awkward situations that often pose programming challenges. Run

them to see the algorithms in action, to study performance empirically
and check your results against the tables in the book, or to try your
own modifications.

When appropriate, empirical and analytic results are presented to
illustrate why certain algorithms are preferred. When interesting, the
relationship of the practical algorithms being discussed to purely the-
oretical results is described. Although not emphasized, connections to
the analysis of algorithms and theoretical computer science are devel-
oped in context. Specific information on performance characteristics
of algorithms and implementations is synthesized, encapsulated, and
discussed throughout the book.

Programming Language

The programming language used for all of the implementations is C++.
The programs use a wide range of standard C++ idioms, and the text
includes concise descriptions of each construct.

Chris Van Wyk and I developed a style of C++ programming
based on classes, templates, and overloaded operators that we feel
is an effective way to present the algorithms and data structures as
real programs. We have striven for elegant, compact, efficient, and
portable implementations. The style is consistent whenever possible,
so that programs that are similar look similar.

For many of the algorithms in this book, the similarities hold re-
gardless of the language: Quicksort is quicksort (to pick one prominent
example), whether expressed in Ada, Algol-60, Basic, C, C++, Fortran,
Java, Mesa, Modula-3, Pascal, PostScript, Smalltalk, or countless other
programming languages and environments where it has proved to be
an effective sorting method. On the one hand, our code is informed
by experience with implementing algorithms in these and numerous
other languages (a C version of this book is also available, and a Java
version will appear soon); on the other hand, some of the properties
of some of these languages are informed by their designers’ experience
with some of the algorithms and data structures that we consider in
this book.

Chapter 1 constitutes a detailed example of this approach to de-
veloping efficient C++ implementations of our algorithms, and Chapter
2 describes our approach to analyzing them. Chapters 3 and 4 are de-

vii

viii

PREFACE

voted to describing and justifying the basic mechanisms that we use
for data type and ADT implementations. These four chapters set the
stage for the rest of the book.

Acknowledgments

Many people gave me helpful feedback on earlier versions of this book.
In particular, hundreds of students at Princeton and Brown have suf-
fered through preliminary drafts over the years. Special thanks are due
to Trina Avery and Tom Freeman for their help in producing the first
edition; to Janet Incerpi for her creativity and ingenuity in persuading
our early and primitive digital computerized typesetting hardware and
software to produce the first edition; to Marc Brown for his part in
the algorithm visualization research that was the genesis of so many
of the figures in the book; and to Dave Hanson and Andrew Appel
for their willingness to answer all of my questions about programming
languages. I would also like to thank the many readers who have pro-
vided me with comments about various editions, including Guy Almes,
Jon Bentley, Marc Brown, Jay Gischer, Allan Heydon, Kennedy Lemke,
Udi Manber, Dana Richards, John Reif, M. Rosenfeld, Stephen Seid-
man, Michael Quinn, and William Ward.

To produce this new edition, I have had the pleasure of working
with Peter Gordon, Debbie Lafferty, and Helen Goldstein at Addison-
Wesley, who have patiently shepherded this project as it has evolved.
It has also been my pleasure to work with several other members of
the professional staff at Addison-Wesley. The nature of this project
made the book a somewhat unusual challenge for many of them, and
I much appreciate their forbearance.

I have gained three new mentors in writing this book, and partic-
ularly want to express my appreciation to them. First, Steve Summit
carefully checked early versions of the manuscript on a technical level,
and provided me with literally thousands of detailed comments, partic-
ularly on the programs. Steve clearly understood my goal of providing
elegant, efficient, and effective implementations, and his comments not
only helped me to provide a measure of consistency across the imple-
mentations, but also helped me to improve many of them substantially.
Second, Lyn Dupre also provided me with thousands of detailed com-
ments on the manuscript, which were invaluable in helping me not only

to correct and avoid grammatical errors, but also—more important—
to find a consistent and coherent writing style that helps bind together
the daunting mass of technical material here. Third, Chris Van Wyk
implemented and debugged all my algorithms in C++, answered nu-
merous questions about C++, helped to develop an appropriate C++
programming style, and carefully read the manuscript twice. Chris
also patiently stood by as I took apart many of his C++ programs and
then, as I learned more and more about C++ from him, had to put
them back together much as he had written them. I am extremely
grateful for the opportunity to learn from Steve, Lyn, and Chris—their
input was vital in the development of this book.

Much of what I have written here I have learned from the teaching
and writings of Don Knuth, my advisor at Stanford. Although Don had
no direct influence on this work, his presence may be felt in the book,
for it was he who put the study of algorithms on the scientific footing
that makes a work such as this possible. My friend and colleague
Philippe Flajolet, who has been a major force in the development of
the analysis of algorithms as a mature research area, has had a similar
influence on this work.

I am deeply thankful for the support of Princeton University,
Brown University, and the Institut National de Recherche en Informa-
tique et Automatique (INRIA), where I did most of the work on the
book; and of the Institute for Defense Analyses and the Xerox Palo
Alto Research Center, where I did some work on the book while visit-
ing. Many parts of the book are dependent on research that has been
generously supported by the National Science Foundation and the Of-
fice of Naval Research. Finally, I thank Bill Bowen, Aaron Lemonick,
and Neil Rudenstine for their support in building an academic envi-
ronment at Princeton in which I was able to prepare this book, despite
my numerous other responsibilities.

Robert Sedgewick

Marly-le-Roi, France, 1983
Princeton, New Jersey, 1990, 1992
Jamestown, Rhode Island, 1997
Princeton, New Jersey, 1998

x

PREFACE

C++ Consultant’s Preface

Algorithms are what first drew me to computer science. Studying algo-
rithms requires thinking in several ways: creatively, to discover an idea
that will solve a problem; logically, to analyze its correctness; math-
ematically, to analyze its performance; and, painstakingly, to express
the idea as a detailed sequence of steps so it can become software. Since
my greatest satisfaction in studying algorithms comes from realizing
them as working computer programs, I jumped at the chance to work
with Bob Sedgewick on an algorithms book based on C++ programs.

Bob and I have written the sample programs using appropriate
features of C++ in straightforward ways. We use classes to separate
the specification of an abstract data type from the details of its im-
plementation. We use templates and overloaded operators so that our
programs can be used without change for many different types of data.

We have, however, passed up the chance to display many other
C++ techniques. For example, we usually omit at least some of the
constructors needed to make every class be “first class” (but see Chap-
ter 4 to learn how you can do this); most constructors use assignment
instead of initialization to store values in data members; we use C-style
character strings instead of relying on strings in the C++ library; we do
not use the most “lightweight” possible wrapper classes; and we use
simple, instead of “smart,” pointers.

We made most of these choices to keep the focus on algorithms,
rather than distracting you with details of techniques specific to C++.
Once you understand how the programs in this book work, you will
be well equipped to learn about any or all of these C++ techniques,
to appreciate the efficiency tradeoffs they involve, and to admire the
ingenuity of the designers of the Standard Template Library.

Whether this is your first encounter with the study of algorithms
or you are renewing an old acquaintance, may you enjoy it at least as
much as I have enjoyed working with Bob Sedgewick on the programs.

Thanks: to Jon Bentley, Brian Kernighan, and Tom Szymanski,
from whom I learned much of what I know about programming; to
Debbie Lafferty, who suggested I consider this project; and to Bell Labs,
Drew University, and Princeton University, for institutional support.

Christopher Van Wyk
Chatham, New Jersey, 1998

To Adam, Andrew, Brett, Robbie,
and especially Linda

Notes on Exercises

Classifying exercises is an activity fraught with peril, because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations, to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

>9.57 Give the binomial queue that results when the keys EASY
QUE STION are inserted into an initially empty binomial queue.
Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.
Exercises that add new and thought-provoking information to the
material are marked with an open circle, as follows:

0 14.20 Write a program that inserts N random integers into a
table of size N/100 using separate chaining, then finds the length
of the shortest and longest lists, for N = 10°, 10%, 10°, and 10°.
Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.
Exercises that are intended to challenge you are marked with a black
dot, as follows:

® 8.46 Suppose that mergesort is implemented to split the file at
a random position, rather than exactly in the middle. How many
comparisons are used by such a method to sort N elements, on
the average?
Such exercises may require a substantial amount of time to complete,
depending upon your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.
A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

®e 15.29 Prove that the height of a trie built from N random bit-
strings is about 21g N.

xiii

Xiv

These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

1.23 Modify Program I.4 to generate random pairs of integers

between 0 and N — 1 instead of reading them from standard input,

and to loop until N — 1 union operations have been performed.

Run your program for N = 10%, 10*, 10°, and 10°and print out

the total number of edges generated for each value of N.
In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical
analysis:

1.13 Compute the average distance from a node to the root in
a worst-case tree of 2" nodes built by the weighted quick-union
algorithm.

There are far too many exercises for you to read and assimilate
them all; my hope is that there are enough exercises here to stimulate
you to strive to come to a broader understanding on the topics that
interest you than you can glean by simply reading the text.

Contents

Fundamentals

Chapter 1. Introduction

1.1
1.2
1.3
1.4
1.5

Algorithms - 4

A Sample Problem—Connectivity - 7
Union-Find Algorithms - 11
Perspective - 22

Summary of Topics - 24

Chapter 2. Principles of Algorithm Analysis

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Implementation and Empirical Analysis - 28
Analysis of Algorithms - 33

Growth of Functions - 36

Big-Oh Notation - 44

Basic Recurrences - 49

Examples of Algorithm Analysis - 53
Guarantees, Predictions, and Limitations - §9

27

TABLE OF CONTENTS

Data Structures

Chapter 3. Elementary Data Structures 69

3.1 Building Blocks - 70

3.2 Arrays - 83

3.3 Linked Lists - 91

3.4 Elementary List Processing - 97
3.5 Memory Allocation for Lists - 106
3.6 Strings - 110

3.7 Compound Data Structures - 116

Chapter 4. Abstract Data Types 129

4.1 Abstract Objects and Collections of Objects - 140
4.2 Pushdown Stack ADT - 144

4.3 Examples of Stack ADT Clients - 147

4.4 Stack ADT Implementations - 153

4.5 Creation of a New ADT - 158

4.6 FIFO Queues and Generalized Queues - 166

4.7 Duplicate and Index Items - 175

4.8 First-Class ADTs - 179

4.9 Application-Based ADT Example - 192

4.10 Perspective - 198

Chapter 5. Recursion and Trees 201

5.1 Recursive Algorithms - 202

5.2 Divide and Conquer - 210

5.3 Dynamic Programming - 222

5.4 Trees - 230

5.5 Mathematical Properties of Trees - 240
5.6 Tree Traversal - 243

5.7 Recursive Binary-Tree Algorithms - 249
5.8 Graph Traversal - 255

5.9 Perspective - 261

xXvi

Sorting

Chapter 6. Elementary Sorting Methods 265

6.1 Rules of the Game - 267

6.2 Selection Sort - 273

6.3 Insertion Sort - 274

6.4 Bubble Sort - 277

6.5 Performance Characteristics of Elementary Sorts - 279
6.6 Shellsort - 285

6.7 Sorting Other Types of Data - 293

6.8 Index and Pointer Sorting - 299

6.9 Sorting Linked Lists - 307

6.10 Key-Indexed Counting - 312

Chapter 7. Quicksort 315

7.1 The Basic Algorithm - 316

7.2 Performance Characteristics of Quicksort - 321
7.3 Stack Size - 325

7.4 Small Subfiles - 328

7.5 Median-of-Three Partitioning - 331

7.6 Duplicate Keys - 336

7.7 Strings and Vectors - 339

7.8 Selection - 341

Chapter 8. Merging and Mergesort 347

8.1 Two-Way Merging - 348

8.2 Abstract In-Place Merge - 351

8.3 Top-Down Mergesort - 353

8.4 Improvements to the Basic Algorithm - 357

8.5 Bottom-Up Mergesort - 359

8.6 Performance Characteristics of Mergesort - 363
8.7 Linked-List Implementations of Mergesort - 366
8.8 Recursion Revisited - 370

Chapter 9. Priority Queues and Heapsort 373

9.1 Elementary Implementations - 377
9.2 Heap Data Structure - 381

xXvil

