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TO THE STUDENT

This book is intended for your use as you study Calculus with Analytic

Geometry by Arthur B. Simon. Here you will find step-by-step solutions to over
800 exercises illustrating every major type of problem from the text. | have
emphasized applied problems (''word'' problems) because most students have
difficulty with such problems. Many people find the most troublesome aspect of
calculus to be the algebraic manipulation required; | have shown in detail the
algebraic steps used in obtaining the answers. In non-routine problems | have
tried to explain why | chose a particular approach to a problem. In some cases,

alternative solution methods are indicated and common errors are pointed out.

When workina on a problem | suggest that vou not consult the solutions
manual until you have attempted the problem on your own. |If you are stuck on a
problem, you will probably want to read only enough of the solution to get you
started again. After you have finished the problems from a section of the text,
you will find it useful to study the solutions manual so that you can see

alternative methods of solution and can check your work.

Simply reading a solution will usually not be of much benefit. VYou should
read with pencil in hand, verifying the steps as you read. You will also need a
scientific calculator for many of the problems. The calculator need not be an

expensive one, but it should have log and trig functions and some memory. |

assume, of course, that you will have a copy of Calculus with Analytic Geometry
as you use the solutions manual. | refer on occasion to theorems and formulas
from the text and in some problems | use integration formulas from the 1list

’

found in the textbook.
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INTRODUCTION
TO CALCULUS

SECTION 1-1 THE REAL LINE

19. We can write -3x2 - 5x + 2 as -(3x2 + 5x - 2), which factors into =(3x=1) (x+2).
Examining the factors separately, we have

>0 for x in (1/3,)
3x-1 =0 for x = 1/3
<0 for x in (-»,1/3)

Next, we enter this

information

x+2

in a diagram.

0 for x in (-2,»)
0 for x = =2
0 for x in (-»,-2)

ANl Vv

Y

3x-1 - - - - == - == - 0+ +++++ + + +
| |
x+2 - - -0 ++++++ |+ +++++++ 4+
I |
| I
! I
] i 1 I 1 I
1
- -2 - 0 = 2
3 : 1 3 3
I |
(3x-1) (x+2) ++++0---=-=-= O++++++ ++ +
l I
-(3x-1) (x+2) - - - -0+ +F+F+FF+FF+F0 - === ===
From the diagram we see that
2 >0 for x in (-2,1/3)
-3x"-5x + 2 =0 for x=-2or 1/3
<0 for

21. The diagram has a line for each of

x (x+1) (2-x)

x in (=»,-2) or (1/3,x).

the three factors, x, x+1, and 2-x.

- == =-0+++++ | ++++
| | I
- -0+ + |l +++++ 1+ +++
| I !
++l++ , +++++0-- - -
I | 1
! 1 I
1 1 | 1 -
-1 0 1 2
I ! I
| 1
++0~--0+++++0--- -




SECTION 1-1 2

The answer can be obtained directly from the diagram:

0 for x in (-»,-1) or (0,2)
0 for x=-1, 0or 2
0 for x in (-1,0) or (2,»).

ALV

x(x+1) (2-x)

29. The signs of the numerator and denominator are shown on separate lines.

L-x ++++++++++ 1 ++0---

2x=6 - = = = = = = = = = 0O+ + 1 ++ +
| 1
! 1
1 1 | 1 1 >
0 1 2 3 L
| |
4-x I |
7x=6 I + + 0
{; undefined

NOTE: An expression of the form %-equals 0 provided a#0, but any

expression of the form %—is undefined.

Answer:

- >0 for x in (3,4)
%6 =0 for x=14
<0 for x in (-©,3) or (4,»)

The expression is undefined for x=3.

31. First add the fractions.

1 _x(x=2) + 1 _x2 = 2x+1 _ (x - 1)°
x=2 x = 2 x=2 X = 2 ’

x +

Here is a sign diagram:

(x-1)2 ++++++0++ brs ot
| |
X=2 === = = = l = = 0+ + +
: |
A . | >
0 1 2 i
2 L !
(x=1)° = = = - = = 0--1+++
x=2 t_undefined
Answer:
1 >0 for x in (2,»)
x + = ) =0 for x =1
<0 for x in (=»,1) or (1,2)

The expression is undefined for x=2.



3 SECTION 1-2

51. |3x = 5] <4

-4 < 3x -5 <4 (since |B| < a if and only if -a < B < a)
-4 + 5 <3x <4 +5
1 <3x <9
1/3 < x <3

Thus the original inequality holds if and only if x is in the interval (%- 3).

55. | 23 | < g5

=2

lfééi- < .25 (since ——%1 = if;?l = IX;3I)
[x-3] < .5

.5 < x-3 < .5

2.5 < x < 3.5
SECTION 1-2 THE COORDINATE PLANE

1. The distance between the points (x],yl) = (1,3) and (xz,yz) = (2,5) is

V)2 + ()2 = V@2 + 5-32 «/T%F = /5

The midpoint of the line segment is

+
V% T T Y 1+2 3+5\_,3
- =z )= (g
2 2
19. In the equation y = 2x2 - 3x + 1 we see that a=2, b=-3, and c=1. Since
a > 0, the graph of the parabola opens upward.
i .ob_ 23 .3
x coordinate of the vertex: = ( h) i

y coordinate of the vertex: 2(3/4)% - 3(3/4) + 1 = -1/8

To find the y-intercept, set x=0 to obtain y=1. To find the x-intercepts
we must find the values of x for which y=0; i.e., we must solve
2

2x° = 3x + 1 = 0. Factoring gives (2x-1)(x-1) = 0, so x=1/2 or x=1.
4
Y
In summary, we have found these points: r
x | o [ 1/72] 3/6 | 1 1+

y 1] o8] 0

N|=

y=2x2-3x+]

— X




SECTION 1-2 L

25.

49.

51.

55.

To find the center and radius, complete the square:

x2 + y2 + 2x -2y =0

(x2+2x+ )+ (y2 =2y + ) =0+ _+

n
o
+
+

(x2 + 2x + 1) + (y2 = 2y +1)
(x + D2 + (y - N2

Comparing with the standard equation (1.22)
we see that h=-1, k=1 and r=/2. Hence, the
graph is a circle with center (-1,1) and
radius v2 .

L4

Since the center is (1,-2), the equation is of the form

(x=1)2 + (y + 2)2 = 12,
The point (2,4) must satisfy the equation, so
2

(2-1)2 + (4 + 2)2 = r"; that is, 37 =r

The equation is (x-1)2 + (y + 2)2 = 37.

To find the equation of the circle, we
need to determine the center and radius.
The solution is easier to visualize if
we first draw a picture. The center of
the circle must be the midpoint of PQ,
which is
2+8 —2+6
L v ) = (5,2)

by the midpoint formula. The radius is
half the distance between P and Q. Thus

= 0\/(8-2)2 + (6-(-2))?

-1 /36T 6h
= %- v100 =5

Hence, the equation is (x—5)2 + (y—z)2 = 25.

2

0(8,6)

The lengths of the sides can be computed using the distance formula:

4(a,8)=\/(2-1)2 + (0 - NZ = /5T =

4(8,0) ;L/&l-gﬁi - )2+ 135

\/9+6/"+3+1 -6v3 + 27 = $/h0

)

/10



5 SECTION 1-3

2 i 2
d(A,C) =\/ {:L%;ﬁi -1] + [l_i_iﬁi - 4

VEE - ey

g\//;i- 6/3 + 3+ 1 +6/3+27 = $/H0 = /10

Since d(A,B)=d(B,C)=d(A,C), the triangle is an equilateral triangle.

SECTION 1-3 FUMNCTIONS

11.

9/ = (/D2 -3/T+1=2-3/7+1=3-3/2

9(-3.7) = (=3.7)% = 3(-3.7) + 1 = 13.69 + 11.1 + 1 = 25.79
g(=1 + h) = (-1 + h)2 - 3(=1 +h) +1=1-2h+ h? + 3 -3h+1

= 5 - 5h + h?

You can compute the function values using the formula in its original form.
The computation will be easier, however, if you first simplify the
expression:

x2= hx + 3 _ (x-3) (x=1)

F(x) = =% X =3 "X 1, provided x#3.
Mow, F(3.1) =3.1 -1 = 2.1
F(3.01) = 3.01 - 1 = 2.01
F(3.001)= 3.001 - 1= 2.001

To find the domain we must determine the largest set of numbers for which

L - x2 / x2 is defined. First, we see that x cannot be zero, since
division by zero is not defined. Also, since the square root of a negative
number is not a real number, we must have h-xz > 0. This inequality

is equivalent to x2 <4, that is, -2 < x < 2. Putting the two parts
together we see that the domain is the set of all numbers in the interval
[-2,2] except 0. This set can also be expressed as the set of all numbers
which are either in [-2,0) or in (0,2].

In determining the range, notice that both x2 and V4 - x2 are

nonnegative. (Remember that '/ "' denotes the nonnegative square root.)

5 2 2 .
Since V4 - x° / x” can be any nonnegative number, the range of the

function is [0,%).

VD) Vb - (D% 7 D =T 2 = Va2



SECTION 1-3 6

25. For the function f defined by f(x) = xz + 2x - 3, the domain is the set of
all real numbers. To find the range we will need to know the y-coordinate of
the vertex of the parabola, since that value is the smallest number in the
range. Now, the x-coordinate of the vertex is -b/2a = -2/2(1) = -1, and
therefore the y-coordinate is f(-1) = (—1)2 + 2(-1) - 3 =-4. we see that
-4 is the smallest possible y value. Thus the range of f is [-4,). Here is

the graph:

f(X)l 0 l-3 l -4 ‘-3 1 0 i
1
) S [ =

33. Fory=-/14 - x2, the domain is the set of all x for which 4 - x2 > 0; that
is, the set of all x in the interval [-2,2] (see the solution to Exercise 19
above). To determine the range, observe that -V 4 - x2 is smallest when
4 - x> is largest. This occurs when x = 0, which gives y = -2. The largest
value of -vY4 - x* is zero. We conclude that the range is [-2,0] .



7 SECTION 1-4

To identify the graph of y = -/ 4 - x? , square both sides to obtain
y2 =4 - x2. This gives x° + y2 = L, which we recognize as the equation of
a circle with center (0,0) and radius 2. The graph of y = -V4 - x? is

the lower half of this circle.

y A
1 L >» X
2
L
~2 y = -J/4 - x?

SECTION 1-4 APPLICATIONS OF FUNCTIONS

7. If f(x) =2 + x - hxz,

f(x + M) - f(x) 2 + (x + ) - 4(x + Ax)z - (2 + x - uxz)

2 x4 M- BOE 2k + ()2 -2 - x o+ b
= i = e v Bl = BlET % G
= Ax = Sxix = Wlad?

9. If fix) = x7,

fx + &) - t(x) = (x + Ax)3 NS

o & 3x2Ax + 3x(Ax)2 + (AX)B— 3 = 3x2Ax + 3x(ax) 2+ (ax)3



SECTION 1-4
. 4 3
29. The volume when r=3 s ;—ﬂ(3) = 3&m.
AV = 5<ﬂ(3 + Ar)3 - §—ﬂ33
3 3
= -;'—TT[B +ar)d - 33
2
- %n[33 v 303%r + 3030002 + (an)3 - 3%
- 5”—%5 [ 27 + 9ar + (ar)? ]
33. The area of a triangle is given by A = %—bh, where b is the base and
h is the height. In this problem h = 3b, so A = %—b(3b) = %—g. The
domain of this function is[0,®), since the base cannot be negative.
G e r 10
41. By similar triangles, P T
so, r = %r\.
Therefore, V = %-ﬂrzh
_ 1 h 2
“3’“(2’ h
- on3
=13 Th
43. |If h is as shown, the area of the window is
= (area of semicircle)+(area of rectangle)
= %ﬂrz + 2rh
But we are given that the perimeter is 12 feet.
Therefore,
12 = (circumference of the semicircle) + h + 2r + h
= f(2mr) + 2r + 2h
2h = 12 -=7r - 2r
Substituting in the expression for the area:
A = %ﬂrz + 2hr = %ﬂrz + (12 -mr - 2r)r

]

12F = %ﬂrz = 2r2

12r - (%+ 2) r2




17.

9 SECTION 1-5

If x is the length of a side and h is the height, the area of the triangle is

xh

1(base)(height) = 5

2

By the Pythagorean theorem,

|
|
2 L, 2 -
x 2 2 2_3x _V/3x I
i + h =x", soh 3 O h 5 X I
lh
Therefore, we have :
= 2
_xh _ 5_/3 _ V3x !
A= = 305 x) =9 -
(——7——)
The domain of this function is (0,»)
SECTION 1-5 LINES
The slope of the line through (-1,2) and (4,1) is
by _1-2 =1
"T A T L~ (. 5
Using the point (-1,2) in the point-slope formula gives the equation
-1
y - 2= ?T'(X - (-1))
=] 9
= == + =
YT EXTE

22.

27.

We could have used the point (4,1) in the point-slope formula instead.

The slope of x - 2y + 1 = 0 can be found by solving for y:
2y = x + 1 or y = %x + %
We see that the slope of x - 2y + 1 =0 is 1/2, and so the slope of the

desired line is -2. Using the given point (6,1) in the point-slope formula
gives

y - 1=-2(x -6) or y=-2x + 13
Ax = Xy = Xy = -.9 - (-1) = .1.
AF _ Fi-.9) - f(-1) _ (=93 +1] - [(1n3+1
Ax . .
= 729 +l 1_/1



SECTION 1-5 10

35.

b1,

46,

flx + 8x) - f(x) _ (x+ Ax)2 - 2(x + Ax) + 3 - (Xz - 2x + 3)
Ax Ax Ax

xé + 2xAx + (Ax)2 - 24 - 2Ax +Jf:_§z + 2% - 4

Ax

At _

_ A (2x + Mx - 2) _ 2% + Ax -2

Ax

BA 1 -0 B(O,Z)r

m., _ 0-(-1) _

AT T r

Since Mep = -]/mBA’ =
////”K(I,O)

side CA is perpendicular to side BA, and

=

N| —

-

therefore, the triangle is a right triangle. c(-1,-1) -
The tangent line at P is perpendicular to the line OP.
Now, the slope of OP is
3 / L V3 , and thus the

2 2

slope of the tangent line is

LI T D 4]

L = Y2, The equation

3 /373 ?

/3 -Q( L

of the tangent line is vy ~S5 = 3 x = 3) or
-/3 2/3
= e + =2
Y 37773

The problem is to find the equation of the line through (0,32) and (100,212).
This line has slope (212 - 32)/(190 - 0) = 130/100 = 9/5. By the slope-

intercept form, the equation is F = g-c + 32.
If F = 98.6, we need to solve
95.6 = 2 C + 32
-3
66.6 = 5 G
c= -g- (656.6) = 5(7.4) = 37.



11 SECTION 1-6

50. First, using the formula from exercise 49 with t=0 and At=3, we see that
the average speed during the first three seconds is

Bs _ s(0+3) - s(0) _ -16(3%) +192(3) - 0
At 3 3
= -16(3) + 192 = 14y ft/sec.

The average speed during the next three seconds is found by setting t=3 and
At=3. We have

: 2
As _ s(3+3) - s(3) _ -16(6%) + 192(6) - [-16(3%) + 192(3]]
At 3 3
= 48 ft/sec.
SECTION 1-6 EXPONENTS AND LOGARITHMS
wn=2/5 1 1 1 1
3, 32 = = = A
32277 ()P 2 M
Il -
11. Let log, 81 = x. Then (1/3)° = 81 = 3', and therefore, 3 ~ = 3h.
K
It follows that x= -4, so log% 31 = -4,
. . h . . X . h X
20. Substituting y = 9<3 in the equation y =3 gives 9+3 = 37,
But 9-3h = 32-3h = 32+h' Thus, 32+h = 3x, and we have x=2+h.

25. Letting y = 1/2 in theequation vy = logl+ x yields 1/2= Iogqx, which is

“1/2

equivalent to x = by the definition of logarithm. Therefore, x=2.

33. If the graph of vy = Iogax contains the point (81,-2), we must have
2 2

-2 = 109381 or a_2 = 81. We can write 81 =9 = (1/9) %, so a=1/9.
. . t/2
43. The amount, Q, present after t years is given by Q = 10(1/2) . (To
check this, notice that when t=2, Q = 10(1/2), half the original amount.)
2]
After 8 years, the amount present will be 10(1/2)0/2 = 10(1/24)
= 10/16 = 5/8 gr.
To compute the average rate of change as t changes from 2 to 4,

we use At = 4-2 = 2. Then



