

CALCULUS

with Analytic Geometry Arthur B. Simon

solutions manual to accompany

CALCULUS WITH ANALYTIC GEOMETRY

by Arthur B. Simon

California State University, Hayward

Prepared by
Edward Keller
California State University, Hayward

SCOTT, FORESMAN AND COMPANY GLENVIEW, ILLINOIS

Copyright © 1982 Scott, Foresman and Company.

All Rights Reserved.

Printed in the United States of America.

ISBN: 0-673-17013-6

TO THE STUDENT

This book is intended for your use as you study <u>Calculus with Analytic</u>

<u>Geometry</u> by Arthur B. Simon. Here you will find step-by-step solutions to over

800 exercises illustrating every major type of problem from the text. I have
emphasized applied problems ("word" problems) because most students have
difficulty with such problems. Many people find the most troublesome aspect of
calculus to be the algebraic manipulation required; I have shown in detail the
algebraic steps used in obtaining the answers. In non-routine problems I have
tried to explain why I chose a particular approach to a problem. In some cases,
alternative solution methods are indicated and common errors are pointed out.

When working on a problem I suggest that you not consult the solutions manual until you have attempted the problem on your own. If you are stuck on a problem, you will probably want to read only enough of the solution to get you started again. After you have finished the problems from a section of the text, you will find it useful to study the solutions manual so that you can see alternative methods of solution and can check your work.

Simply reading a solution will usually not be of much benefit. You should read with pencil in hand, verifying the steps as you read. You will also need a scientific calculator for many of the problems. The calculator need not be an expensive one, but it should have log and trig functions and some memory. I assume, of course, that you will have a copy of Calculus with Analytic Geometry as you use the solutions manual. I refer on occasion to theorems and formulas from the text and in some problems I use integration formulas from the list found in the textbook.

ACKNOWLEDGEMENTS

I would like to express my appreciation to Art Simon who discussed a number of the solutions with me. My special thanks go to Marguerite Hsu for cheerfully and accurately typing the manuscript. Also, I wish to thank Jan Muzzy, who with her usual skill assisted with the typing. Finally, I would like to thank my wife, Esther, and children, David and Beth, for their constant love and support.

Ed Keller Hayward, California

February 1982

此为试读,需要完整PDF请访问: www.ertongbook.com

CONTENTS

Chapter	1	INTRODUCTION TO CALCULUS	1
Chapter	2	LIMITS AND CONTINUITY	18
Chapter	3	DERIVATIVES	26
Chapter	4	APPLICATIONS OF DERIVATIVES	45
Chapter	5	INTEGRATION	81
Chapter	6	APPLICATIONS OF THE DEFINITE INTEGRAL	105
Chapter	7	LOGARITHMIC AND EXPONENTIAL FUNCTIONS	130
Chapter	8	TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS	149
Chapter	9	METHODS OF INTEGRATION	160
Chapter	10	L'HÔPITAL'S RULE AND IMPROPER INTEGRALS	186
Chapter	11	INFINITE SERIES	197
Chapter	12	CONIC SECTIONS	220
Chapter	13	POLAR COORDINATES AND PARAMETRIC EQUATIONS	235
Chapter	14	VECTORS, CURVES, AND SURFACES IN SPACE	250
Chapter	15	PARTIAL DIFFERENTIATION	274
Chapter	16	MULTIPLE INTEGRALS	307
Chapter	17	ELEMENTS OF VECTOR CALCULUS	331
Chapter	18.	DIFFERENTIAL EQUATIONS	348

INTRODUCTION TO CALCULUS

SECTION 1-1 THE REAL LINE

19. We can write $-3x^2 - 5x + 2$ as $-(3x^2 + 5x - 2)$, which factors into -(3x-1)(x+2). Examining the factors separately, we have

$$3x-1 \begin{cases} > 0 & \text{for } x \text{ in } (1/3,\infty) \\ = 0 & \text{for } x = 1/3 \\ < 0 & \text{for } x \text{ in } (-\infty,1/3) \end{cases} x+2 \begin{cases} > 0 & \text{for } x \text{ in } (-2,\infty) \\ = 0 & \text{for } x = -2 \\ < 0 & \text{for } x \text{ in } (-\infty,-2) \end{cases}$$

Next, we enter this information in a diagram.

From the diagram we see that

$$\begin{cases} -3x^2 - 5x + 2 \\ = 0 & \text{for } x \text{ in } (-2, 1/3) \\ = 0 & \text{for } x = -2 \text{ or } 1/3 \\ < 0 & \text{for } x \text{ in } (-\infty, -2) \text{ or } (1/3, \infty). \end{cases}$$

21. The diagram has a line for each of the three factors, x, x+1, and 2-x.

The answer can be obtained directly from the diagram:

$$x(x+1)(2-x) \begin{cases} > 0 & \text{for } x \text{ in } (-\infty,-1) \text{ or } (0,2) \\ = 0 & \text{for } x = -1, 0 \text{ or } 2 \\ < 0 & \text{for } x \text{ in } (-1,0) \text{ or } (2,\infty). \end{cases}$$

29. The signs of the numerator and denominator are shown on separate lines.

NOTE: An expression of the form $\frac{0}{a}$ equals 0 provided a \neq 0, but any expression of the form $\frac{a}{0}$ is undefined.

Answer:

$$\frac{4-x}{2x-6} \begin{cases} > 0 & \text{for } x \text{ in } (3,4) \\ = 0 & \text{for } x=4 \\ < 0 & \text{for } x \text{ in } (-\infty,3) \text{ or } (4,\infty) \end{cases}$$

The expression is undefined for x=3.

31. First add the fractions.

$$x + \frac{1}{x-2} = \frac{x(x-2) + 1}{x-2} = \frac{x^2 - 2x + 1}{x-2} = \frac{(x-1)^2}{x-2}$$
.

Here is a sign diagram:

Answer:

$$x + \frac{1}{x-2} \qquad \begin{cases} > 0 & \text{for } x \text{ in } (2,\infty) \\ = 0 & \text{for } x = 1 \\ < 0 & \text{for } x \text{ in } (-\infty,1) \text{ or } (1,2) \end{cases}$$

The expression is undefined for x=2.

51.
$$|3x - 5| < 4$$

 $-4 < 3x - 5 < 4$ (since $|B| < a$ if and only if $-a < B < a$)
 $-4 + 5 < 3x < 4 + 5$
 $1 < 3x < 9$
 $1/3 < x < 3$

Thus the original inequality holds if and only if x is in the interval $(\frac{1}{3}, 3)$.

55.
$$\left| \frac{x-3}{-2} \right| < .25$$
 $\left| \frac{x-3}{2} \right| < .25$
 $\left| \frac{x-3}{2} \right| < .25$
(since $\left| \frac{x-3}{-2} \right| = \left| \frac{x-3}{2} \right| = \left| \frac{x-3}{2} \right|$)
 $\left| \frac{x-3}{2} \right| < .5$
 $-.5 < x-3 < .5$
 $2.5 < x < 3.5$

SECTION 1-2 THE COORDINATE PLANE

1. The distance between the points $(x_1,y_1) = (1,3)$ and $(x_2,y_2) = (2,5)$ is

$$\sqrt{(x_2^{-x_1})^2 + (y_2^{-y_1})^2} = \sqrt{(2-1)^2 + (5-3)^2} = \sqrt{1+4} = \sqrt{5}.$$

The midpoint of the line segment is

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{1+2}{2}, \frac{3+5}{2}\right) = \left(\frac{3}{2}, 4\right).$$

19. In the equation $y = 2x^2 - 3x + 1$ we see that a=2, b=-3, and c=1. Since a > 0, the graph of the parabola opens upward.

x coordinate of the vertex:
$$-\frac{b}{2a} = -(\frac{-3}{4}) = \frac{3}{4}$$

y coordinate of the vertex:
$$2(3/4)^2 - 3(3/4) + 1 = -1/8$$

To find the y-intercept, set x=0 to obtain y=1. To find the x-intercepts we must find the values of x for which y=0; i.e., we must solve

$$2x^2 - 3x + 1 = 0$$
. Factoring gives $(2x-1)(x-1) = 0$, so $x=1/2$ or $x=1$.

In summary, we have found these points:

x	0	1/2	3/4	1_1_
У	1	0	-1/8	0

To find the center and radius, complete the square:

$$x^{2} + y^{2} + 2x - 2y = 0$$

 $(x^{2} + 2x + _) + (y^{2} - 2y + _) = 0 + _ + _$
 $(x^{2} + 2x + 1) + (y^{2} - 2y + 1) = 0 + 1 + 1$
 $(x + 1)^{2} + (y - 1)^{2} = 2$

Comparing with the standard equation (1.22) we see that h=-1, k=1 and $r=\sqrt{2}$. Hence, the graph is a circle with center (-1,1) and radius $\sqrt{2}$.

Since the center is (1,-2), the equation is of the form 49.

$$(x-1)^2 + (y + 2)^2 = r^2$$
.

The point (2,4) must satisfy the equation, so

$$(2-1)^2 + (4+2)^2 = r^2$$
; that is, $37 = r^2$

The equation is $(x-1)^2 + (v + 2)^2 = 37$

To find the equation of the circle, we need to determine the center and radius. The solution is easier to visualize if we first draw a picture. The center of the circle must be the midpoint of PQ, which is

$$(\frac{2+8}{2}, \frac{-2+6}{2}) = (5,2)$$

by the midpoint formula. The radius is half the distance between P and Q. Thus

$$r = \frac{1}{2} \sqrt{(8-2)^2 + (6-(-2))^2}$$
$$= \frac{1}{2} \sqrt{36 + 64}$$
$$= \frac{1}{2} \sqrt{100} = 5$$

Hence, the equation is $(x-5)^2 + (y-2)^2 = 25$.

The lengths of the sides can be computed using the distance formula: $d(A,B) = \sqrt{(-2-1)^2 + (0-1)^2} = \sqrt{9+1} = \sqrt{10}$

$$d(A,B) = \sqrt{(-2-1)^2 + (0-1)^2} = \sqrt{9+1} = \sqrt{10}$$

$$d(B,C) = \sqrt{\left[\frac{-1 + \sqrt{3}}{2} - (-2)\right]^2 + \left[\frac{1 - 3\sqrt{3}}{2} - 0\right]^2} = \sqrt{\left(\frac{3 + \sqrt{3}}{2}\right)^2 + \left(\frac{1 - 3\sqrt{3}}{2}\right)^2}$$
$$= \frac{1}{2}\sqrt{9 + 6\sqrt{3} + 3 + 1 - 6\sqrt{3} + 27} = \frac{1}{2}\sqrt{40} = \frac{1}{2}\sqrt{4 \cdot 10} = \sqrt{10}$$

$$d(A,C) = \sqrt{\left[\frac{-1 + \sqrt{3}}{2} - 1\right]^2 + \left[\frac{1 - 3\sqrt{3}}{2} - 1\right]^2}$$

$$= \sqrt{\left(\frac{-3 + \sqrt{3}}{2}\right)^2 + \left(\frac{-1 - 3\sqrt{3}}{2}\right)^2}$$

$$= \frac{1}{2}\sqrt{9 - 6\sqrt{3} + 3 + 1 + 6\sqrt{3} + 27} = \frac{1}{2}\sqrt{40} = \sqrt{10}$$

Since d(A,B)=d(B,C)=d(A,C), the triangle is an equilateral triangle.

SECTION 1-3 FUNCTIONS

5.
$$g(\sqrt{2}) = (\sqrt{2})^2 - 3\sqrt{2} + 1 = 2 - 3\sqrt{2} + 1 = 3 - 3\sqrt{2}$$

 $g(-3.7) = (-3.7)^2 - 3(-3.7) + 1 = 13.69 + 11.1 + 1 = 25.79$
 $g(-1 + h) = (-1 + h)^2 - 3(-1 + h) + 1 = 1 - 2h + h^2 + 3 - 3h + 1$
 $= 5 - 5h + h^2$

11. You can compute the function values using the formula in its original form. The computation will be easier, however, if you first simplify the expression:

$$F(x) = \frac{x^2 - 4x + 3}{x - 3} = \frac{(x - 3)(x - 1)}{x - 3} = x - 1$$
, provided x\neq 3.

Now,
$$F(3.1) = 3.1 - 1 = 2.1$$

 $F(3.01) = 3.01 - 1 = 2.01$
 $F(3.001) = 3.001 - 1 = 2.001$

19. To find the domain we must determine the largest set of numbers for which $\sqrt{4-x^2}$ / x^2 is defined. First, we see that x cannot be zero, since division by zero is not defined. Also, since the square root of a negative number is not a real number, we must have $4-x^2 \ge 0$. This inequality

is equivalent to $x^2 \le 4$, that is, $-2 \le x \le 2$. Putting the two parts together we see that the domain is the set of all numbers in the interval $\begin{bmatrix} -2,2 \end{bmatrix}$ except 0. This set can also be expressed as the set of all numbers which are either in $\begin{bmatrix} -2,0 \end{bmatrix}$ or in $\begin{bmatrix} 0,2 \end{bmatrix}$.

In determining the range, notice that both x^2 and $\sqrt{4-x^2}$ are nonnegative. (Remember that "\sqrt{"}" denotes the nonnegative square root.) Since $\sqrt{4-x^2}$ / x^2 can be any nonnegative number, the range of the function is $[0,\infty)$.

$$f(\sqrt{2}) = \sqrt{4 - (\sqrt{2})^2} / (\sqrt{2})^2 = \sqrt{4-2} / 2 = \sqrt{2}/2$$

此为试读,需要完整PDF请访问: www.ertongbook.com

25. For the function f defined by $f(x) = x^2 + 2x - 3$, the domain is the set of all real numbers. To find the range we will need to know the y-coordinate of the vertex of the parabola, since that value is the smallest number in the range. Now, the x-coordinate of the vertex is -b/2a = -2/2(1) = -1, and therefore the y-coordinate is $f(-1) = (-1)^2 + 2(-1) - 3 = -4$. We see that -4 is the smallest possible y value. Thus the range of f is $[-4,\infty)$. Here is the graph:

x	-3	-2	=1	0	1	
f(x)	0	-3	-4	-3	0	

33. For $y=-\sqrt{4-x^2}$, the domain is the set of all x for which $4-x^2\geq 0$; that is, the set of all x in the interval [-2,2] (see the solution to Exercise 19 above). To determine the range, observe that $-\sqrt{4-x^2}$ is smallest when $4-x^2$ is largest. This occurs when x=0, which gives y=-2. The largest value of $-\sqrt{4-x^2}$ is zero. We conclude that the range is [-2,0].

To identify the graph of $y=-\sqrt{4-x^2}$, square both sides to obtain $y^2=4-x^2$. This gives $x^2+y^2=4$, which we recognize as the equation of a circle with center (0,0) and radius 2. The graph of $y=-\sqrt{4-x^2}$ is the lower half of this circle.

SECTION 1-4 APPLICATIONS OF FUNCTIONS

7. If
$$f(x) = 2 + x - 4x^2$$
,

$$f(x + \Delta x) - f(x) = 2 + (x + \Delta x) - 4(x + \Delta x)^2 - (2 + x - 4x^2)$$

$$= 2 + x + \Delta x - 4(x^2 + 2x\Delta x + (\Delta x)^2) - 2 - x + 4x^2$$

$$= \Delta x - 4x^2 - 8x\Delta x - 4(\Delta x)^2 + 4x^2$$

$$= \Delta x - 8x\Delta x - 4(\Delta x)^2$$

9. If
$$f(x) = x^3$$
,

$$f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3$$

$$= x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

8

29. The volume when r=3 is $\frac{4}{3}\pi(3)^3 = 36\pi$.

$$\Delta V = \frac{4}{3} \pi (3 + \Delta r)^3 - \frac{4}{3} \pi 3^3$$

$$= \frac{4}{3} \pi \left[(3 + \Delta r)^3 - 3^3 \right]$$

$$= \frac{4}{3} \pi \left[3^3 + 3 \cdot 3^2 \Delta r + 3 \cdot 3 (\Delta r)^2 + (\Delta r)^3 - 3^3 \right]$$

$$= \frac{4 \pi \Delta r}{3} \left[27 + 9 \Delta r + (\Delta r)^2 \right]$$

- 33. The area of a triangle is given by $A = \frac{1}{2}bh$, where b is the base and h is the height. In this problem h = 3b, so $A = \frac{1}{2}b(3b) = \frac{3}{2}b^2$. The domain of this function is $[0,\infty)$, since the base cannot be negative.
- 41. By similar triangles, $\frac{r}{h} = \frac{10}{20}$,

so,
$$r = \frac{1}{2}h$$
.

Therefore,
$$V = \frac{1}{3} \pi r^2 h$$

$$= \frac{1}{3} \pi \left(\frac{h}{2}\right)^2 h$$

$$= \frac{1}{12} \pi h^3$$

43. If h is as shown, the area of the window is

= (area of semicircle)+(area of rectangle)
=
$$\frac{1}{2}\pi r^2$$
 + 2rh

But we are given that the perimeter is 12 feet. Therefore,

12 = (circumference of the semicircle) + h + 2r + h
=
$$\frac{1}{2}(2\pi r)$$
 + 2r + 2h

$$2h = 12 - \pi r - 2r$$

Substituting in the expression for the area:

$$A = \frac{1}{2}\pi r^{2} + 2hr = \frac{1}{2}\pi r^{2} + (12 - \pi r - 2r)r$$

$$= 12r - \frac{1}{2}\pi r^{2} - 2r^{2}$$

$$= 12r - (\frac{\pi}{2} + 2) r^{2}$$

45. If x is the length of a side and h is the height, the area of the triangle is $\frac{1}{2}(base)\,(height)\,=\,\frac{xh}{2}\;.$

By the Pythagorean theorem,

$$\frac{x^2}{4}$$
 + h² = x², so h²= $\frac{3x^2}{4}$, or h= $\frac{\sqrt{3}x}{2}$

Therefore, we have

$$A = \frac{xh}{2} = \frac{x}{2}(\sqrt{\frac{3}{2}} \times) = \frac{\sqrt{3}x^2}{4}$$

The domain of this function is $(0,\infty)$

SECTION 1-5 LINES

17. The slope of the line through (-1,2) and (4,1) is

$$m = \frac{\Delta y}{\Delta x} = \frac{1 - 2}{4 - (-1)} = \frac{-1}{5}$$

Using the point (-1,2) in the point-slope formula gives the equation

$$y - 2 = \frac{-1}{5} (x - (-1))$$

 $y = \frac{-1}{5} x + \frac{9}{5}$

We could have used the point (4,1) in the point-slope formula instead.

22. The slope of x - 2y + 1 = 0 can be found by solving for y:

$$2y = x + 1$$
 or $y = \frac{1}{2}x + \frac{1}{2}$.

We see that the slope of x - 2y + 1 = 0 is 1/2, and so the slope of the desired line is -2. Using the given point (6,1) in the point-slope formula gives

$$y - 1 = -2(x - 6)$$
 or $y = -2x + 13$

27.
$$\Delta x = x_2 - x_1 = -.9 - (-1) = .1$$
.

$$\frac{\Delta f}{\Delta x} = \frac{f(-.9) - f(-1)}{.1} = \frac{[(-.9)^3 + 1] - [(-1)^3 +]}{.1}$$

$$= \frac{-.729 + 1}{.1} = \frac{.271}{.1} = 2.71$$

35.
$$\frac{\Delta f}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{(x + \Delta x)^2 - 2(x + \Delta x) + 3 - (x^2 - 2x + 3)}{\Delta x}$$
$$= \frac{x^2 + 2x\Delta x + (\Delta x)^2 - 2x - 2\Delta x + 3 - x^2 + 2x - 3}{\Delta x}$$
$$= \frac{\Delta x (2x + \Delta x - 2)}{\Delta x} = 2x + \Delta x - 2$$

41.
$$m_{BA} = \frac{0-2}{1-0} = -2$$

 $m_{CA} = \frac{0-(-1)}{1-(-1)} = \frac{1}{2}$

Since
$$m_{CA} = -1/m_{RA}$$

side CA is perpendicular to side BA, and therefore, the triangle is a right triangle.

46. The tangent line at P is perpendicular to the line OP. Now, the slope of OP is

$$\frac{\sqrt{3}}{2}$$
 / $\frac{1}{2}$ = $\sqrt{3}$, and thus the

slope of the tangent line is

$$\frac{-1}{\sqrt{3}} = \frac{-1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{-\sqrt{3}}{3}$$
. The equation

of the tangent line is $y - \frac{\sqrt{3}}{2} = \frac{-\sqrt{3}}{3}(x - \frac{1}{2})$ or $y = \frac{-\sqrt{3}}{3}x + \frac{2\sqrt{3}}{3}.$

43. The problem is to find the equation of the line through (0,32) and (100,212). This line has slope (212 - 32)/(100 - 0) = 130/100 = 9/5. By the slope—intercept form, the equation is $F = \frac{9}{5}C + 32$.

If
$$F = 98.6$$
, we need to solve

$$98.6 = \frac{9}{5} \text{ C} + 32$$

$$66.6 = \frac{9}{5} \text{ c}$$

$$C = \frac{5}{9} (66.6) = 5(7.4) = 37.$$

50. First, using the formula from exercise 49 with t=0 and $\Delta t=3$, we see that the average speed during the first three seconds is

$$\frac{\Delta s}{\Delta t} = \frac{s(0+3) - s(0)}{3} = \frac{-16(3^2) + 192(3) - 0}{3}$$
$$= -16(3) + 192 = 144 \text{ ft/sec.}$$

The average speed during the next three seconds is found by setting t=3 and Δt =3. We have

$$\frac{\Delta s}{\Delta t} = \frac{s(3+3) - s(3)}{3} = \frac{-16(6^2) + 192(6) - [-16(3^2) + 192(3)]}{3}$$
$$= \frac{48 \text{ ft/sec.}}{3}$$

SECTION 1-6 EXPONENTS AND LOGARITHMS

3.
$$32^{-2/5} = \frac{1}{32^{2/5}} = \frac{1}{(5\sqrt{32})^2} = \frac{1}{2^2} = \frac{1}{4}$$

- 11. Let $\log_{\frac{1}{3}} 81 = x$. Then $(1/3)^{x} = 81 = 3^{4}$, and therefore, $3^{-x} = 3^{4}$. It follows that x = -4, so $\log_{\frac{1}{3}} 31 = -4$.
- 20. Substituting $y = 9 \cdot 3^h$ in the equation $y = 3^x$ gives $9 \cdot 3^h = 3^x$. But $9 \cdot 3^h = 3^2 \cdot 3^h = 3^{2+h}$. Thus, $3^{2+h} = 3^x$, and we have x=2+h.
- 25. Letting y = 1/2 in the equation $y = \log_4 x$ yields $1/2 = \log_4 x$, which is equivalent to $x = 4^{1/2}$ by the definition of logarithm. Therefore, x=2.
- 33. If the graph of $y = \log_a x$ contains the point (81,-2), we must have $-2 = \log_a 81$ or $a^{-2} = 81$. We can write $81 = 9^2 = (1/9)^{-2}$, so a=1/9.
- 43. The amount, Q, present after t years is given by $Q = 10(1/2)^{t/2}$. (To check this, notice that when t=2, Q = 10(1/2), half the original amount.)

After 8 years, the amount present will be
$$10(1/2)^{8/2} = 10(1/2^4)$$

= $10/16$ = $5/8$ gr.

To compute the average rate of change as t changes from 2 to 4, we use Δt = 4-2 = 2. Then

此为试读,需要完整PDF请访问: www.ertongbook.com