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Preface

Probably, the most extended (pseudo)definition of the set of functions known as “special
functions” refers to those mathematical functions which are widely used in scientific and
technical applications, and of which many useful properties are known. These functions
are typically used in two related contexts:

1. as a way of obtaining simple closed formulas and other analytical properties of solu-
tions of problems from pure and applied mathematics, statistics, physics, and engi-
neering;

2. as a way of understanding the nature of the solutions of these problems, and for
obtaining numerical results from the representations of the functions.

Our book is intended to provide assistance when a researcher or a student needs to
get the numbers from analytical formulas containing special functions. This book should
be useful for those who need to compute a function by their own means, or for those who
want to know more about the numerical methods behind the available algorithms. Our main
purpose is to provide a guide of available methods for computations and when to use them.
Also, because of the large variety of numerical methods that are available for computing
special functions, we expect that a broader “numerical audience” will be interested in many
of the topics discussed (particularly in the first part of the book). Several levels of reading
are possible in this book and most of the chapters start with basic principles. Examples are
given (o illustrate the use of the methods, pseudoalgorithms are given to describe technical
details, and published algorithms for computing a selection of functions are described as
practical illustrations for the basic methods of this book.

The presentation of the topics is organized in four parts: Basic Methods, Further Tools
and Methods, Related Topics and Examples, and Software. The first part (Basic Methods)
describes a set of methods which, in our experience, are the most popular and important ones
for computing special functions. This includes convergent and divergent series, Chebyshev
expansions, linear recurrence relations, and quadrature methods. These basic chapters are
mostly self-contained and start from first principles. We expect that many of the contents
are appropriate for advanced numerical analysis courses (parts of the chapters are in fact
based on classroom notes); however, because the main focus is on special functions, detailed
examples of application are also provided.

The second part of the book (Further Tools and Methods) contains a set of important
methods for computing special functions which, however, are probably not so well known
as the basic methods (at least for readers who are not very familiar with special functions).

Xiii



Xiv Preface

Certainly, this does not mean that these tools are less effective than the selected basic meth-
ods; for example, the performance of uniform asymptotic expansions is quite impressive in
many instances. The chapters in this second part are: Continued Fractions, Computation
of the Zeros of Special Functions, Uniform Asymptotic Expansions, and Other Methods
(Padé approximations, sequence transformations, best rational approximations, Taylor’s
method for ordinary differential equations, and further quadrature methods including the
Clenshaw—Curtis and Filon methods).

The third part (Related Topics and Examples) describes some methods that are specific
to certain functions. A first chapter is devoted to the (asymptotic) numerical inversion of
a class of distribution functions with details for gamma and beta distributions (a topic
which researchers in statistics, probability, and econometrics may find useful). A second
chapter (Further Examples) describes varied topics such as the Euler summation formula
(and applications), the computation of symmetric elliptic integrals (Carlson’s method), and
the numerical inversion of Laplace transforms.

We thank NIST for the permission o quote part of a section in the DLMF project (from
the chapter “Numerical Methods™) on solving ordinary differential equations by using Taylor
series (our §9.5), and Frank Olver for his assistance in writing this part. We thank the SIAM
editorial staff, in particular Louis Primus, for their patience and splendid cooperation.

Finally, the fourth part illustrates the use of the methods by providing descriptions of
specific algorithms for computing selected functions: Airy functions, Legendre functions,
and parabolic cylinder functions, among others. The corresponding Fortran 90 routines can
be downloaded from

http://functions.unican.es.

The web page will hold successive actualizations and extensions of the available software.

We would like to thank Dr. Van Snyder for his extensive and useful comments, and Dr.
Ernst Joachim Weniger for providing us with notes, and further useful information, on Padé
approximations and sequence transformations. Finally, we thank the Spanish Ministry
of Education and Science for financial support (projects MTM2004-01367, MTM2006-
09050).
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0 Chapter 1
Introduction

This book deals with numerical methods for computing special functions. This means that
we describe numerical methods for computing quantities for which no general definition
seems Lo be available. What makes a function used in applications or in pure mathematics a
“special function™? This is perhaps a matter of taste. There is, however, a general practical
consensus regarding which functions are special: a special function should be useful for
applications and should satisfy certain special propertics which allow analytical treatment.

Several centuries ago the astronomers used the trigonometric functions as their basic
tools in mathematics. In recent centuries the development of wave theory introduced many
other functions of higher level, and many of these functions became the classical functions
with which many problems from physics and other applied sciences could be described. In
pure mathematics special functions arose that played a role in number theory. Also later,
some of the functions that became important in statistics and probability theory were new
or related to the classical functions, in particular the gamma and beta distribution functions.

There are many books now that give collections of special functions and/or describe
their properties. A classical reference is the Handbook of Mathematical Functions, edited
by Milton Abramowitz and Irene Stegun. The first edition appeared in 1964 and very soon
a complete revision of this important reference, with many new chapters, will be published,
together with a free accessible web version. Although the Handbook has introductory matter
on computing and approximating elementary and special functions, complete algorithms or
software are not given in either version of this reference work.

When the Handbook was published in 1964, a great number of algorithms and methods
for computing special functions were already known, but in later years many new ideas were
developed and became available in the form of mathematical software for computing special
functions. Software libraries were constructed and several books appeared with collections
of software, some of them claiming to cover all the functions considered in the Handbook.

In the present book we are not so formidably optimistic that we claim to describe
computational methods or algorithms for all functions described in the old or new version
of the Handbook. However, we describe methods which, according to our own experience,
appear most frequently in the computation of special functions; this is so particularly in the
first part of the book, devoted to power series, Chebyshev expansions, recurrence relations
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and continued fractions, and quadrature of integrals, but many other topics are also described
in the book. Some methods are illustrated with explicit software examples in the last part
of the book.

Airy functions are a good example of functions for which different techniques (con-
vergent and divergent series, Chebyshev expansions, quadrature) can be of interest for
computing the functions, depending on the range of the variable. Next we consider this set
of functions, solutions of the second order differential equation y” — xy = 0, as an example
for introducing basic concepts to be described later to a greater extent. It should come as
no surprise that we first discuss the solution of the differential equation using power series.

Convergent power series and differential equations

In many books of mathematical methods for physicists or engineers the words “special
functions” appear for the first time when solving certain differential equations (for instance,
when solving the Schrodinger equation by separation of variables) and, particularly, when
trying (o solve the equations by power series. Equations such as the Hermite or Bessel
equations appear, which can be solved by using convergent power series.

The fact that we can find a convergent series for a specific solution of a second order
ordinary differential equation may seem to indicate that the computation of such a function
is of no concern. However, this is not true from a numerical point of view, even when the
series does converge for any real or complex value of the argument. It could only be true
if we had at our disposal a computer equipped with infinite precision arithmetic, that was
infinitely fast, and that was without limitations in the numbers which can be stored. Because
this ideal machine does not exist, the use of series will be limited by these three factors (as
any other method).

Take, for instance, the elementary example y” — y = 0, with y;(z) = ¢ and
y2(z) = e ° as two independent solutions. Maclaurin series for y; and y» are conver-
gent for all z. However, when )iz > 0 the range of accurate computation of y,(z) should be
restricted to small |z|, because for large |z|, the first terms of the series are much larger in
modulus than the whole sum, leading to numerical cancellation and severe loss of significant
digits. Also, the series for y;(z) is dangerous for large z because many terms need to be
added. Maclaurin series should not be used very far from z = 0.

For not-so-elementary functions, the same types of limitations occur when using
series (Chapter 2). Take for instance the very important case of the Airy functions, which
are solutions of the second order ordinary differential equation

y'(z) — 23(z) = 0. (1.1)

We can try power series 10 find the general solution. Substituting y(z) = Y 02 a,2" we
readily see that ayy3, = 0, n € N, and that two linearly independent solutions are

o0 ; ] Z_‘k o0 . 2 :ﬁk+|
! = 3= e 2(Z) = 3 = ' ) .
ni@) ; (3)k Gy 2@ g (3)k Gk+ ! (1:2)

where (¢)g = |, (@)y = a(e+ 1)--- (¢ + k — 1),k > |. Elementary methods (the ratio
test) can be used to prove that both series are convergent for any complex value of z.
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At this moment, let us restrict the problem to real positive z = x. We observe that
both y;(x) and y,(x) are positive and increasing for x > 0; all the terms of the series
are positive and no cancellations occur. Now, because all the solutions of the ditferential
equation can be written as y(x) = ay;(x) + By2(x), and both y;(x) and y,(x) tend to 400
as x — oo, the equation necessarily has a solution f(x), called a recessive solution, such
that f(x)/y(x) — O for any other solution y(x) not proportional to f(x).

Indeed, as x — 400, either y;(x)/y2(x) — 0, giving that y,(x) is recessive, or
yva(x)/yi(x) — 0, giving that y2(x) is recessive, or y;(x)/y2(x) — C # 0, giving that
¥i(x) = Cy>(x) is recessive. The last possibility is what happens for the recessive solutions
of (1.1), with C = 3'*1(2/3)/I"(1/3). Again, for an algorithm the Maclaurin series can
only be considered for not too large x, particularly for computing the recessive solution
(such as for e in the former example).

Later we will see that the recessive solution is a multiple of Ai(z), which is expo-
nentially small at 400, and both y|(z) and y,(z) given in (1.2) are exponentially large.
Hence, the solutions y;(z) and y»(z) cannot be used to compute all solutions of (1.1) for
all values of z, in particular when z is large, because this may introduce large errors. We
say that y;(z) and y»(z) do not constitute a numerically satisfactory pair of solutions of
(1.1) at 400, because the recessive solution cannot be computed by these two for large pos-
itive z. The same situation occurs when considering differential equations for other special
functions. For a graph of the Airy function Ai(x), see Figure 1.1.

Obviously, one should never compute an exponentially decreasing function for large
values of the variable as a linear combination of two increasing functions for values of
the argument for which the computed value is much smaller than the increasing functions.
Subtracting two large quantities for obtaining a small quantity is a numerical disaster. For
the recessive Airy function Ai(x) we have Ai(1) = 0.135. .., and the loss of significant
digits becomes noticeable when we use the functions of (1.2) when x > 1. Therefore, if
we need to compute the recessive solution, we must consider an independent method of
computation for this function.

In addition, one needs to pay attention to different ranges of the variable in order
to select a numerical satisfactory pair. For instance, going back to the elementary case,
¥ — y = 0, the solutions y;(z) = € and y(z) = e~%, which constitute a numerically
satisfactory pair when )z >> 0, but this pair is not a satisfactory pair near z = 0. Near the
origin, it is better to include y3(z) = sinhz = (y;(z2) — y2(z))/2 as a solution when |z| is
small; a companion solution could be y4(z) = cosh z. Of course, y3(z) and y4(z) do not
constitute a numerically satisfactory pair when |Miz] is large.

Liouville-Green approximation and dominant asymptotic behavior

More information on the behavior of the solutions of a linear second order differential
equation can be obtained by transforming the equation. It is a straightforward matter to
check (see also §2.2.4) that, if y(z) is a solution of (1.1), then the function Y(z) = z'/*y(z)
satisfies the equation

.. 5
Y —1 Y(2) =0 1.3
0+ ( + %6;2) ©) (1.3)
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0.6 T T T T

04— =

Figure 1.1. The Airy function Ai(x) is oscillating for x < 0 and exponentially
small for x — +o00.
in the variable ¢ = %z“/z. Looking at (1.3), we can expect that for large ¢ the term 5/(36¢%)
will be negligible and that the solutions will behave exponentially, Y(Z) ~ exp (£¢). Undo-
ing the changes, we expect that the recessive solution of (1.1) behaves as /% exp(—3z/2).
A more detailed analysis [ 168, Chap. 6] shows that this approximation (the Liouville-Green
approximation) makes sense. Therefore, we are certain that a recessive solution exists which
decreases exponentially.

Condition of solution of ordinary differential equations

It is not a surprise that the recessive solutions of the defining differential equations are
usually the most important in applications; indeed, physical quantities are by nature finite
quantities and functions representing these quantities should be bounded. From a numerical
point of view, as explained, a special treatment for these functions is needed.

Anyway, isn’t the Airy function a solution of a second order differential equation?
Isn’tit true that most students who have received a course on numerical analysis are familiar
with methods for solving second order differential equations? Isn’t it true that numerical
methods for second order differential equations apply to any solution of the equation? So,
can we rely blindly on, let’s say, Runge—Kutta? Or do we need more analysis? The answer
is, obviously, yes, analysis is necessary and one needs to know if the desired solution is
recessive.



