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Preface

We felt that time has come for a new epoch in stochastic analysis. Indeed
various fields in mathematics as well as related fields in science continue to cross-
fertilize each other, while keeping good relationships with probability theory.
There, dominant roles have been played by stochastic analysis (classical and
quantum).

It therefore seems to be a good opportunity to organize a conference on
important topics in stochastic analysis. Almost three decades has passed since
white noise analysis was launched, we thus plan to have perspectives of the
theory on this occasion.

Consequently, the conference “Stochastic Analysis: Classical and Quantum
— Perspectives of White Noise Theory” took place at Meijo University, Nagoya,
Japan for the period of November 1-5, 2004.

The organizers of the conference were extremely happy to see many emi-
nent mathematicians having contributed to the success of the conference and
cultivated new ideas. To our great pleasure, important papers presented at the
conference are published in the Proceedings of the conference. As such, we are
grateful to the respective authors and to the referees of those papers.

We acknowledge gratefully the general support of Meijo University and Min-
istry of Education, Culture, Sports, Science and Technology for the conference.

Special thanks are also due to Professors M. Rockner, L. Streit and T. Shimizu
who gave financial support together with me for the publication of this Pro-
ceedings. Finally, I wish to note the great help given by members of the local
organizing committee: Professors M. Hitsuda, S. IThara, K. Saito and Si Si. In
particular, it is to be mentioned that this Proceedings would not appear without
the help of Professor Si Si who handled the aspect of editing.

July 2005 Takeyuki Hida
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White Noise Functional Approach
to Polymer Entanglements

Christopher C. Bernido and M. Victoria Carpio-Bernido!
Research Center for Theoretical Physics
Central Visayan Institute Foundation
Jagna, Bohol 6308, Philippines

Abstract

The Hida-Streit white noise path integral is used to investi-
gate the entanglement probabilities of two chainlike macro-
molecules where one polymer lies on a plane and the other
perpendicular to it. To simulate the data contained in the lin-
eal structure of a polymer of length L which lies on the plane,

a potential, V' = f(s) ¥, is introduced where, f = df /ds,
0 < s < L, and f(s) a modulating function. Using the T-
transform in white noise calculus, entanglement probabilities
are calculated which show a significant influence of chirality
or the “handedness” of the polymer. The freedom to choose
the modulating function f(s), which gives rise to different
entanglement probabilities, allows one to control and predict
the coiling behavior of polymers. As examples, we consider
two cases: (a) f(s) = kcos (vs), and (b) f(s) = ksP.

1 Introduction

Investigations in biochemistry reveal that protein molecules are able to
carry out their biological functions only when they are folded into spe-
cific three-dimensional structures [1]. For instance, enzymes, which are
essentially protein molecules, have highly specific shapes which allow
them to receive their targets as a lock receives a key. Understanding
this molecular recognition process, which depends on the structure of
proteins, acquires importance since almost all chemical processes within
a living organism rely on enzyme catalysis. What are the rules involved
in forming protein structures? What are the factors which determine
the manner in which proteins fold? One essential factor which has been
identified is the one-dimensional sequence of data embodied in the re-
peating units of macromolecules. It has been noted that the genetic code
is translated from DNA sequences to amino acid sequences, and this

!Electronic mail: cbernido@mozcom.com



one-dimensional sequence of data influences the highly specific shapes of
proteins. Moreover, chirality, or “handedness,” of macromolecules also
plays an important role in the globular structure of proteins. It is known,
for instance, that amino acids in proteins are “left-handed,” and that the
chirality of amino acids manifests in the helical structures of the proteins
they form. These observations give rise to more specific questions. How
can the sequence of data in the lineal structure of macromolecules allow
us to predict or determine a protein’s three-dimensional structure? To
what extent does chirality influence the folding or unfolding of proteins?

In this paper, we present a simple model which may shed light into
these questions. In particular, we look at a model which incorporates
the following features observed in a macromolecule:

(1) the ability of a macromolecule to use the one-dimensional
sequence of data in its repeating units to influence its glob-
ular structure, and,

(2) the chirality of the polymer which influences the three-
dimensional structure of a macromolecule.

We start with a polymer entanglement scenario originally studied by
Edwards [2] and Prager and Frisch [3]. We then extend this system [4]
by simulating the data contained in the repeating units of the entangled

polymer using a potential of the form, V = f(s) 9, where f = df/ds,
and 9 is an angular variable about the z-axis. Here, f(s) is a modulat-
ing function where, 0 < s < L, and L is the length of the polymer. We
shall see that for any modulating function f(s), the “handedness” of the
winding polymer has a significant effect on the entanglement probabil-
ities. In particular, we look at two cases (a) f(s) = kcos(vs), and (b)
f(s) = ks?, where k is a positive constant and p = +1,£2, 43, .... Our
calculations are greatly facilitated by first parametrizing the probabil-
ity function in terms of the white noise variable, as was done by Hida
and Streit [5] for the case of quantum propagators. The white noise
functional can then be evaluated in a straightforward manner using the
T-transform of white noise calculus [7]-[9].

2 Two Chainlike Macromolecules

In 1967, S. F. Edwards [2] and, independently, S. Prager and H. L. Frisch
(3], solved the entanglement problem of two chainlike macromolecules in
the absence of intermolecular forces. The problem consists of a polymer
on a plane whose motion is constrained by a straight polymer orthog-
onal to the plane, since the macromolecules cannot cross each other.
The polymer on the plane which starts at ro and ends at r; has fixed



endpoints, and can be viewed as a random walk with paths that can en-
tangle, clockwise or counterclockwise, around the straight polymer which
intersects the origin of the plane. Employing polar coordinates r =(r, )
for this problem, S. F. Edwards [2] used the Wiener representation of
the random walk in which the probability is represented by,

P(ry,ro) :/exp —%/(dr/ds)“)ds D?[x], (2.1)
0

where the integral is taken over all paths r(s) such that r(0) = r, and
r(L) = r;. Here, we represent the polymer of length L as consisting of
N freely hinged individual molecules, each of length [ such that I =
Ni. In view of the point singularity, a set of topologically equivalent
configurations can be characterized by a winding number n, where n =
0,+1,+2, ..., indicating the number of times the polymer turns around
the straight polymer intersecting the plane at the origin (m > 0, signifies
n turns counterclockwise, and n < —1 means |n + 1| turns clockwise).

3 Entanglement with an Intermolecular Potential
Vi(r)

In 1977, F. W. Wiegel [6] extended this entanglement problem to include
an intermolecular force where the repeating units of the entangled poly-
mer interact with the straight polymer. For any potential V(r) which
has a minimum at some radius R, Wiegel obtained a low-temperature
limit for the entanglement probabilities given by,

W(n) = (R/l)\/4r/N exp (—-4n*n®R?/NI?) ; (N >>1). (3.1)

For example, the potential of the form, V = Cr?+D/r? (C > 0, D > 0),
was considered where R = (D/ C’)l/ * is a radius where the potential has
a minimum. With this potential, the force is repulsive at short distances
and attractive at large distances. Wiegel then obtained the entangle-
ment probabilities for this harmonically bound polymer to be that of
Eq. (3.1). For low temperatures, he also noted that the configurations
of the polymer are confined to a narrow strip in the immediate vicinity
of a circle around the origin with radius R . Below, we shall use these
observations of Wiegel which we refer to as the generic case.

4 White Noise Path Integral Approach

Let us now familiarize ourselves with the white noise path integral ap-
proach by using it to arrive at Eq. (3.1). Since we are interested in



the number of possible windings around the origin that the polymer on
the plane undergoes, we can simplify the calculation by fixing the radial
variable to 7 = R, i.e., r =(R,¥), and use 9 to track the number of turns,
clockwise or counterclockwise, around the origin. As mentioned in the
previous section, a fixed radial part describes the entanglement scenario
in the low temperature limit [6] for any polymer interaction potential
V/(r) which has a minimum at some value r = R. For the generic case,
Eq. (2.1) reduces to,

P(9;,%) = / exp [—% /L R? (%)2@ DIR d¥), (4.1)

with, 99, = 9(L) and Y = 9¥(0). The paths ¥ can be parametrized as,

3(L)=do + (VI/R) B(L)
L
= + (\/Z/R) /w(s) ds, (4.2)
0

where B(s) is a Brownian motion parametrized by s, and w(s) a random
white noise variable. With Eq. (4.2), the integrand in P(2;, 9) becomes,

exp [—% / R? <%§)2ds} = exp [— / w(s)? ds] . (4.3)

Noting that the polymer can wind n times, clockwise or counterclock-
wise, we use the Donsker delta function

8(¥(L) — %1 + 2mn), (4.4)
to fix the endpoint ¥, where n = 0,+1,£2,... . Since P(d;,%) is
now expressed as a white noise functional, the integration over D[R dd]
becomes an integration over, N, d®w = exp [(1/2) [ w(s)? ds] du(w),
where du(w) is the Gaussian white noise measure. Eq. (4.1) can now be
written as,

+o00
P(9y,90) = / S I 6(3(L) - 9 +2nn) dp(w),  (45)

n=-—00

where



N | =

I = Nexp (— /w(s)2 ds) : (4.6)

0

The evaluation of P(1¥;,%y) is facilitated by using the Fourier represen-
tation of the é - function, i.e.,

1 .
P(01,90)= o= > / exp [iA (9o — Oy + 27n)]

n=-—oo

L

X /exp (i)\ (\ﬂ/R) /w(s) ds) Iy dp(w) dX . (4.7)

0

Observing that the integration over du(w) is just the T-transform of I
[7]-[9], we obtain,

1 +o00
P(1,%) = o Z /exp [iA (B0 — ¥1 + 2mn))

n=-—00

x exp (—A’IL/4R?) dX

= f P,. (4.8)

n=—oo

Here, the P, is the probability function for polymer configurations which
entangle n - times around the origin. The remaining integral in B, is a
Gaussian integral over \. We have,

By= % / exp [i (9o — 91 + 27n) — N*(IL/4R?)] dA

=/ R?/ILmexp [— (R*/IL) (9 — V1 + 27rn)2] . (4.9)

Also, applying Poisson’s sum formula,

+oo +oo
% Z exp (ing) = Z 8 (¢ +2mm), (4.10)

to Eq. (4.8), we get,



Py, o) =5 > /5(x\+m)

X expzfi/\ (Yo — V1) — N*(IL/4R?)] dX
+o0
= 51;; exp [—im (9o — 91) — m*(IL/4R?)] . (4.11)

For an arbitrary initial starting point we may set, ¥y = ¥;, and the
probability that the polymer winds n - times is,

W(n)=F,/P(L)

V/R?/ILmexp [— (2mnR)* /IL]
- = . (4.12)
= :Z_ exp [-m?2(IL/4R?)]

For a very long polymer, L = Nl >> 1, the dominant term in the
denominator is for m = 0. Hence,

W(n) = (R/l)\/4r/N exp (—4n*n*R?/NI*); (N >>1), (4.13)
which agrees with the result, Eq. (3.1), obtained by Wiegel [6].

5 Length-dependent Potentials

We shall now generalize the system discussed in the previous section by
adding a length-dependent potential, V = f(s) ¥, acting on the polymer
on the plane as it entangles around the second straight polymer at the

origin [4]. Here, f = df /ds, where f (s) is the modulating function. The
potential V' is added to the “kinetic part” of Eq. (4.1) such that the

probability function becomes,
o (A -
R T +1f(s) 9| ds p D[R dV).

Py (91, D) Z/eXP{“%/L
’ (5.1)

The nature of the potential may be understood in the following way.
Firstly, one may associate with it a length-dependent force given by,

F = —VV = —f(s)/R. Secondly, the effect of the potential term may
also be understood by rewriting it as,




j}@)ﬂ@:]%(m) ds—]f(%) s
=f(L)19(L)*f(0)19(0)—/Lf19d8 - (5.2)
0

The first two terms are constants given by the values of f and ¥ at the
endpoints. The last term, on the other hand, shows that one essentially

has a “velocity-dependent potential” in view of 9. Moreover, from Eq.

(5.2), one may have the case, f(s) = 0 with f # 0, such that the nonzero
f may still manifest in the probability function. For the case, f = 0, one
obtains the results of the generic case discussed in the previous section.
An example of a constant nonzero f may be illustrated if one takes,
f = (q¢®o/27), where g is the net charge of each repeating unit of the
polymer which winds around the straight polymer that contains a con-
stant magnetic flux ®, oriented along the z-axis. This choice leads to an

effective potential, f ¥ = gA - &, which resembles that of an Aharonov-
Bohm setup where A is the vector potential for the constant magnetic

Using again the parametrization Eq. (4.2), we obtain an expression
similar to Eq. (4.7) but modified by the potential Eq. (5.2) of the form,

Py (91,90) =exp [f(0) ¥(0) — f(L) ¥(L)]
1 Z / exp iA (Yo — 91 + 27n))

x/ p{z/L \/—/R (/\—zf)w(s)ds}

x Iy dp(w) d) . (5.3)

The integration over du(w) is again just the T - transform of I, which
yields,



Py (91, 9) = exp [f(0) 9(0) — F(L) I(L)]
X% Z / exp [iX (Yo — 91 + 2mn))

L
xexp{—(l/4R2)/()\—if )? ds} X
0

+o0
=Y P..

n=—oo

(5.4)

The Gaussian integral over A in P, can be evaluated to give,

Pa= | exp £(0) 010) - f(L)ﬂ(L)]exp!(j? / fzds)]
0

L 2
R? l
X exp A 190-'191+27T’n+2—R2 fds . (5.5)
0

Employing the Poisson sum formula to Eq. (5.4), and integrating A
yields,

Py(91,80) = o exp [£(0) 9(0) — £(L) 9(L)] S exp[—im (J5 — 1))

2
m=—00

mAL  iml
xexp{— 15 —-2R2/f ds+4R2/f ds} (5.6)

From these, we obtain the probability that the polymer entangles n times

as, (setting, 9o = ),

W(Tl)=Pn/PV
R? l 7 :
R 47rexp - (27m+ﬁgoff ds)
:T —ﬁ ; L b (57)
93 (mff dS)
0



where 63(u) is the theta function [11],

O3(u)=1+2 Z q~ cos(2mu), (5.8)

m=1
with u = (I/4R?) [ f ds, and q = exp (—NI?/4R?).
6 Chirality of Entangled Polymers

Let us now consider the effect of the “handedness” of a polymer on
the coiling probabilities of a macromolecule. As is normally the case,
we define “handedness” in a way that a “right-handed” polymer would
have a mirror-image which is “left-handed.” We may write Eq. (5.7) as,

W (n) = W, exp —(2“7”> /L fds| 6.1)
0

where W, symmetric in 7, is of the form,

7 2
€xp ':_ 4121127122 - o (f f ds) }
R [4rm 0
W, = =4/ — = . (6.2)
VN L
03| g7z [ f ds
0

From these equations the following observations may be made:

(1) It is clear from Eq. (6.1) that the entanglement prob-
ability W(n) significantly changes depending on whether n
is a positive or a negative number. If we designate clock-
wise winding (n < —1) as “right-handed,” and anti-clockwise
winding (n > 0) as “left-handed,” then for f > 0, a “right-
handed” polymer is more likely to have configurations with
large values of winding number n than “left-handed” ones.
In particular, for winding numbers +n, the corresponding
“right” and “left-handed” entanglements differ by an expo-
nential factor, i.e., W(—n)/W(n) = exp [(4nrn/L) [ f ds].

(2) We also see from Eq. (6.1), that a change in sign of the
modulating function, from f to —f, gives a similar effect as
that of n to —n, i.e., from “left-handed” to “right-handed”.
Since the role of the modulating function f is that of simu-
lating the data contained in the lineal structure of the poly-
mer, it appears that the choice of the sign of f is one way
of incorporating the observation that the “handedness” of



