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Preface

This book is an introduction to the theory of stochastic evolution equations with
Lévy noise. The theory extends several results known for stochastic partial dif-
ferential equations (SPDEs) driven by Wiener processes. We develop a general
framework and discuss several classes of examples both with general Lévy noise
and with Wiener noise. Our approach is functional analytic and, as in Da Prato and
Zabezyk (1992a), SPDEs are treated as ordinary differential equations in infinite-
dimensional spaces with irregular coefficients. In many respects the Lévy noise
theory is similar to that for Wiener noise, especially when the driving Lévy pro-
cess is a square integrable martingale. The general case reduces to this, owing to
the Lévy—Khinchin decomposition. The functional analytic approach also allows
us to treat equations with a so-called cylindrical Lévy noise and implies, almost
automatically, that solutions to equations with Lévy noise are Markovian. In some
important cases, however, a cadlag version of the solution does not exist.

An important role in our approach is played by a generalization of the concept
of the reproducing kernel Hilbert space to non-Gaussian random variables, and
its independence of the space in which the random variable takes values. In some
cases it proves useful to treat Poissonian random measures, with respect to which
many SPDEs have been studied, as Lévy processes properly defined in appropriate
state spaces.

The majority of the results appear here for the first time in book form, and
the book presents several completely new results not published previously, in
particular, for equations driven by homogeneous noise and for dissipative systems.

Several monographs have been devoted to stochastic ordinary differential equa-
tions driven by discontinuous noise: see Métivier (1982), Protter (2005),
Applebaum (2005) and Cont and Tankov (2004), the last two of which are de-
voted entirely to the case of Lévy noise.
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X Preface

To the best of our knowledge the only monograph devoted to SPDEs with gen-
eral noise is Kallianpur and Xiong (1995), which covers mainly linear equations.

The papers by Chojnowska-Michalik (1987) on Ornstein—Uhlenbeck processes
and by Kallianpur and Pérez-Abreu (1988) were the first to discuss SPDEs with
Lévy noise. Then, after a period of 10 years, articles on the subject started to
appear again; see e.g. Albeverio, Wu and Zhang (1998), Applebaum and Wu
(2000), Bo and Wang (2006), Fournier (2000, 2001), Fuhrman and Réckner (2000),
Hausenblas (2005), Mueller (1998), Mytnik (2002), Knoche (2004), Saint Loubert
Bié (1998), Stolze (2005) and Peszat and Zabczyk (2006).

Infinite-dimensional calculus, but not SPDEs, with Lévy noise in a disguised
form appeared in the late 1990s, in papers on mathematical finance devoted to the
bond market; see Bjork er al. (1997), Bjork, Kabanov and Runggaldier (1997) and
Eberlein and Raible (1999). This list is certainly not exhaustive.

The book starts with an introductory chapter outlining the interplay between
stochastic dynamical systems, Markov processes and stochastic equations with
Lévy noise. It turns out that all discrete-time stochastic dynamical systems on
arbitrary linear Polish spaces can be represented as solutions to stochastic dif-
ference equations, in which the noise, of random-walk type, enters the equation
linearly. An analogous situation occurs for continuous-time stochastic dynamical
systems on R?. Here the noise is a Lévy process and the stochastic difference
equation is replaced by a stochastic equation of 1td type. To some extent this is
also true in infinite dimensions. That is why stochastic evolution equations with
Lévy noise are of particular interest.

Chapters 2 and 3 are devoted respectively to analytic and probabilistic pre-
liminaries. Basic definitions related to differential operators and function spaces
are recalled, together with fundamental concepts from the theory of stochastic
processes in finite- and infinite-dimensional spaces.

Lévy processes in infinite-dimensional spaces are studied in Chapter 4. The
chapter starts with explicit constructions of Wiener and Poisson processes. Then
it deals with the Lévy—Khinchin decomposition and the Lévy—Khinchin formula.
Integrability properties are also studied.

In Chapter 5 transition semigroups of Lévy processes are considered and, in
particular, their generators.

The important concept of a Poisson random measure is discussed in Chapter 6.
Anapplication to the construction of Lévy processes is given as well. Some moment
estimates are derived.

In Chapter 7 we introduce the concept of the reproducing kernel Hilbert space
(RKHS) of a square integrable Lévy process. Then we study so-called cylindrical
processes and calculate their reproducing kernels. It is also shown that Poisson
random measures can be treated as Lévy processes with values in sufficiently
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large Hilbert spaces. This identification is behind the majority of the results in this
book. It is also shown that cylindrical processes are distributional derivatives of
Lévy sheets.

Chapter 8 concerns stochastic integration, first with respect to square integrable
Hilbert-space-valued martingales and, as an application, with respect to general
Lévy processes. The construction of the operator angle bracket is explained and a
class of integrands is characterized. The final sections are devoted to integration
with respect to a Poisson measure and integration in L?-spaces.

Part II of the book deals with the existence of solutions and their regularity.
Chapter 9 starts with a semigroup treatment of the Cauchy problem for determin-
istic evolution equations. Next, weak solutions and mild solutions to stochastic
equations are introduced and their equivalence is established. The existence of
weak solutions to linear equations is proven as well. If the noise evolves in the
state space then cadlag regularity of the solution is proved, using the Kotelenez
maximal inequality and, in parallel, a dilation theorem, as in Hausenblas and Sei-
dler (2006). We provide an example which shows that the solutions are not cadlag
in general. Finally, the existence of weak solutions is established and their Markov
property is proved.

In Chapter 10 we show that in some cases the Lipschitz assumption can be
relaxed.

Chapter 11 is devoted to the so-called factorization method, introduced in Da
Prato, Kwapieri and Zabczyk (1987). The method allows us, in particular, to prove
the continuity of the stochastic convolution of an arbitrary semigroup with a Wiener
process.

In Chapters 12 and 13, the general theory of the previous chapters is applied
to stochastic parabolic problems and to stochastic wave, delay and transport equa-
tions. Lévy noise is then treated as a Lévy process in extended, Sobolev-type,
spaces. Parabolic equations of a similar type were dealt with in, for example,
Albeverio, Wu and Zhang (1998), Saint Loubert Bié (1998) and Applebaum and
Wu (2000). They are discussed here in aunified way and for general partial differen-
tial operators. Sharp regularity results for the Wiener noise, using the factorization
method, are obtained as well. Stochastic wave equations driven by Lévy processes
have not been studied previously in the literature.

In Chapter 14 we develop a theory of stochastic equations with spatially ho-
mogenous Lévy noise of both parabolic and hyperbolic type on R?. Results known
already for Wiener noise are extended to this more involved case.

The final chapter of the second part of the book, Chapter 15, is devoted to
equations in which the noise enters through the boundary.

Part I11 is devoted to selected applications. Our aim is to show the applicability
of the theory to specific models of physical and economic character. In particular,
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models in statistical mechanics, fluid dynamics and finance are studied in greater
detail. In Chapter 16 we give a self-contained treatment of invariant measures for
dissipative systems with Lévy noise and in Chapter 17 we consider lattice systems.
The Burgers equation is studied in Chapter 18, and, after a brief discussion of a
model for environmental pollution in Chapter 19, in Chapter 20 we present some
applications of stochastic infinite-dimensional analysis to mathematical models of
the bond market.

In Appendix A we give proofs of some results on linear operators often used
in the text. In Appendix B we gather basic results on the theory of Co-semigroups
and provide important results on specific semigroups used in the book. Special
attention is paid to semigroups with non-local generators. This allows us to ex-
tend the results proved for equations with differential operators. However, owing
to space limitations, stochastic equations with non-local linear parts are not dis-
cussed in this book. In Appendix C the existence of cadlag versions of Markov
processes is proved. This leads to a simple proof of the existence of a cadlag ver-
sion of an arbitrary Lévy process. In Appendix D we recall the It formulae for
semimartingales.

A list of symbols is given before the Index.

This book grew out of lectures and papers presented by the authors. We have
used some material from Peszat and Zabczyk (2004) as well as many unpublished
notes.
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Foundations






1

Why equations with Lévy noise?

The book is devoted to stochastic evolution equations with Lévy noise. Such equa-
tions are important because, roughly speaking, stochastic dynamical systems, or
equivalently Markov processes, can be represented as solutions to such equations.
In this introductory chapter, it is shown how that is the case. To motivate bet-
ter the construction of the associated stochastic equations, the chapter starts with
discrete-time systems.

1.1 Discrete-time dynamical systems

A deterministic discrete-time dynamical system consists of a set E, usually
equipped with a o-field £ of subsets of itself, and a mapping F, usually mea-
surable, acting from E into E. If the position of the system at timer =0, 1,...,
is denoted by X(t) then by definition X(t + 1) = F(X(¢)),t =0, 1, ... The se-
quences (X(t), t = 0, 1, .. .) are the so-called trajectories or paths of the dynami-
cal system, and their asymptotic properties are of prime interest in the theory. The
set E is called the state space and the transformation F determines the dynamics
of the system.

If the present state x determines only the probability P(x, I') that at the next
moment the system will be in the set I" then one says that the system is stochastic.
Thus a stochastic dynamical system consists of the state space E, a o-field £ and
a function P = P(x,T"), x € E, I" € £, such that, foreach ' € £, P(-,I") is a
measurable function and, for each x € E, P(x,-) is a probability measure. We
call P the transition function or transition probability. A deterministic system is
a particular case of a stochastic system with P(x, ) = 8F(x), where §, denotes
the Dirac measure at ». We define, by induction, the probability of visiting sets
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Iy,...,[gattimes 1,..., k, starting from x by
P(x,Fl,...,Fk)=f P(x,dx)P(x1; a2, ..., Ti)-
ry

The stochastic analogue of the trajectory of a deterministic dynamical system is
called a Markov chain.

Definition 1.1 A Markov chain X with transition probability P starting fromx €
E isasequence (X (1), t =0, 1, ...) of E-valued random variables on a probability
space (€2, F, P), such that

i) X(©0)=x, P-as.,
() P(X(DeTly, j=1,....,k) = P(x,Ty,....T%), VIi,...,[ €€

Let P be a transition probability on a Polish space' E. By the Kolmogorov exis-
tence theorem (see Theorem 3.7), there is a probability space and a Markov chain
with transition probability P. It turns out that an arbitrary stochastic dynamical
system on a Polish space can be regarded as a solution of the stochastic difference
equation

X(0) =x, X(t+1)=F(X@), Z(t + 1)), F=104 15 5 50 4 (1.1)

where Z(1), Z(2), ... is a sequence of independent identically distributed random
variables (i.i.d.s). In the engineering literature, a sequence of this type is called
discrete-time white noise. We have the following representation result.

Theorem 1.2 Let E be a Polish space, and let £ = B(E) be the family of its Borel
sets. Then, for any transition probability P, there exists a measurable mapping
F: E x [0, 1] — E such that, for any sequence of independent random variables
Z(1), Z(2), ... with uniform distribution on [0, 1] and for any x € E, the process
X given by (1.1) is a Markov chain with transition probability P.

Proof We follow Kifer (1986). First we construct F in the case where E is
a countable set and £ = R. Let E = {1, 2, ...} = N and let pym = P(n, {1}) +
<-4 P(n, {m}), n,m € N. Define F(n,r)=m for r € [pyym—1, Pnjm)- Measur-
ability is obvious. If Z has a uniform distribution on [0, 1] then P({w :
F(n, Z(w)) = m}) = P(n, {m}), as required.

If E =R then we first define Fy(x, a) := P(x,(—0o0,a]) for x e R, a e R,
and set F(x,r) :=inf{a: r < Fy(x, a)}, r € [0, 1]. It is clear that if Z has a uni-
form distribution on [0, 1] then P({w: F(x, Z(w)) € '}) = P(x,T") for x € R
and I' € B(R). By the so-called Borel isomorphism theorem, actually due to K.
Kuratowski (see Kuratowski 1934, Dynkin and Yushkevich 1978 or Srivastava

! That is, a separable metric space that is complete with respect to some equivalent metric.
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1998), any uncountable Polish space is measurably isomorphic to R and the result
follows. O

Remark 1.3 The result is a version of the famous Skorokhod embedding theo-
rem. A similar theorem, but for controlled stochastic dynamical systems, can be
found in Zabczyk (1996), pp. 26-7.

Once the result is proved for complete separable metric spaces E, it can be
generalized to all spaces E that are measurably isomorphic to such spaces, that is,
to all Borel spaces.

If E is a linear space it is convenient to reformulate (1.1) slightly; namely, we
write

dX(1) = X(t) — Xt — 1),  Y(t):=Z() +---+ Z(),
dY(1):=Y(t) — Y(t — 1)

and change the function F to I?(x, r):= —x + F(x,r). Then
dX(t) = F(X(t — 1),dY (1))

Considering an embedding r > §, of the interval [0, 1] into the space of all finite
measures on [0, 1], we arrive at an equation in which the noise enters linearly.
Namely, we set Gk := [, F(x, A(dr) and Z(t) = 874, L(t) := Z(1) +
...+ Z@),dL@t) := Z(1). Then

dX(t) = G(X(t — 1)dL(r), t=12,..., (1.2)

and the increments of L are independent. Thus the diffusion operator G acts on the
increments of the noise in a linear way. An analogous result holds for continuous-
time stochastic dynamical systems with values in R?; see Section 1.5. The main
ideas come from It6 (1951).

1.2 Deterministic continuous-time systems

Deterministic continuous-time dynamical systems are families (F;, t > 0) of trans-
formations from a given state space E into E satisfying the semigroup property
F,F; = Fi4,t,s > 0. The trajectory starting from x is the mapping X(¢) = F;(x)
of the parameter 7. Are the dynamical systems always solutions of differential equa-
tions? The answer is obviously no! Differential equations are well defined only
on rather special state spaces. Even if we assume that the state space is E = R4
and that the transformation (¢, x) — F,(x) is continuous, there are still dynamical
systems not defined by differential equations, as the following example shows.
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Example 1.4  Consider a continuous but nowhere differentiable function
f: R+ R and define

L3 X+t
Fl(y)_(f(x-Ft)—l—y—f(x))’ t>0, x,yeR.

Then the trajectories of F; are nowhere differentiable and consequently (F;) cannot
be a solution to an equation of the form d F,(z)/dt = A(F;(z)), where A: R? > R2.

However, if E = R¢ and all trajectories of a given dynamical system are contin-
uously differentiable then they are solutions of the ordinary differential equation
dX(z)/dt = A(X(2)), where A(x) := lim, jo(1/1)(F;(x) — x).

If £ is an infinite-dimensional space then the answer can again be positive
provided that the flow is not too pathological.

Example 1.5 Assume that £ is a Banach space and that, for each r > 0, F,
is a continuous linear transformation on E and, for each x € E, t — F,(x) is a
continuous mapping. Then in a proper sense dF,(x)/dt = A(F,(x)), t >0,
where A is usually an unbounded linear operator on E. In fact (F;) is a Cy-
semigroup and A is its generator; see Chapter 9 and Appendix B. Often we write
F, = eA’.

Example 1.6 Assume that E is a Hilbert space, that the transformations F, are
contractions, i.e. |Fy(x) — Fy(y)| < |x — y| fort > 0 and x, y € E, and that, for
each x, t — F;(x) is a continuous function. Then dF,(x)/dt = A(F;(x)), t > 0,
where A is a so-called dissipative, usually unbounded and non-linear, operator;
see Chapter 10.

A differential equation does not always uniquely determine the flow of its
solutions. There are many subtleties here and interesting results; see for instance
Hartman (1964).

1.3 Stochastic continuous-time systems

In analogy to discrete-time dynamical systems, a stochastic continuous-time dy-
namical systemis a family ( P,) of stochastic kernels P,(x,I'),r > 0,x € E,I" € £.
We interpret P;(x, I') as the probability that the system will be in a set I' at time
t, provided that its initial position is x. More precisely, we have the following
definition.

Definition 1.7 A family of probability measures P,(x,-) on E is said to be a
transition probability if:



