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Preface

This monograph deals with prediction of vapor-liquid equilibria by the group
contribution method referred to as the Analytical Solutions of Groups (ASOG).
Vapor-liquid equilibrium is an essential property on which the development and
design of distillation processes are based, and because of this important practical
application, many attempts have been made to predict vapor-liquid equilibria. At
present the trend is to use binary data for predicting the vapor-liquid equilibria of
multicomponent systems. However, from a practical standpoint, it is more important
to develop a method which will use binary data to predict the vapor-liquid equilibria
of both multicomponent systems and binary systems at the same time. For this
purpose the group contribution method is considered to be a very useful approach
because it takes into account the groups making up a liquid solution in order to predict
the activity coefficients of the components in the solution.

Over the last few years we have studied the prediction of vapor-liquid equilibria
by the Analytical Solutions of Groups (ASOG). We have determined, for 31 groups,
the group pair parameters necessary for predicting activity coefficients, and we have
used these parameters to predict the vapor-liquid equilibria for about 1100 systems at
low pressures. Our findings confirmed that the absolute arithmetic deviation for a
vapor composition is 1.29%. This monograph describes these results in detail. It
discusses the theory of vapor-liquid equilibria, together with the fundamental equa-
tions in ASOG, and the method for predicting vapor-liquid equilibria. Tables provide
the values of the group pair parameters for the 31 groups and the predicted values of
vapor-liquid equilibria for about 1100 systems. We hope this monograph will prove
useful to chemical engineers engaged in the development and design of separation
processes.

Feburuary 1979
K. Kojima
K. Tochigi
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Nomenclature

A, B, C Antoine vapor pressure constants

ay, group interaction parameter in ASOG
fi fugacity of component i
K vapor-phase equilibrium constant for dimerization
my,, 1, group pair parameters in ASOG
P total pressure
H vapor pressure of pure liquid /
X, group fraction of group k
X; mole fraction of component i in liquid phase
Yi mole fraction of component i in vapor phase
I, group activity coefficient of group &
re group activity coefficient of group k at standard state (pure component 7)
Vi activity coefficient of component i
n true mole fraction in vapor phase
n4, true mole fraction of monomer A4, in saturated vapor of pure liquid 4
N8, true mole fraction of monomer B, in saturated vapor of pure liquid B
Yo number of atoms (other than hydrogen atoms) in molecule i
Vii number of atoms (other than hydrogen atoms) in group k in molecule i
Q; fugacity coefficient of component i
{Superscripts)
FH size contribution
G group contribution
@) standard state
L liquid phase
s saturation
vV vapor phase
L 1I liquid phases I, 11
° pure substance
{Subscripts)
A, B molecule 4 and B
A,, B, monomers of components 4, B

A2a Bz

dimers of components 4, B

ix



NOMENCLATURE

X

i,j molecule i and j

il monomer of component i

i2 dimer of component i

il,jl1 cross dimer of components i, j
k,l,m groupk,/and m

ki group k in molecule i

1,2,3,---, N component 1, 2, 3,---, N
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Chapter One

Vapor-Liquid Equilibria

1.1 NON-IDEAL HOMOGENEOUS SYSTEMS

The criterion of vapor-liquid equilibrium for each component in an N component
system is given by

S (fugacity of component i in the vapor phase)
= fi* (fugacity of component i in the liquid phase)
i=1,2---,N (L]

where f represents fugacity, and superscripts ¥ and L refer respectively, to the vapor
and the liquid phase. Subscript i indicates component i in the mixture.

This monograph is concerned with low pressures of less than one atmosphere in
which the vapor phase can be treated as an almost-ideal gas. Assuming that the vapor
phase follows the ideal gas law, the fugacity of component i in the vapor phase is given
by

=Py, (1.2)
where y; is the mole fraction of component i in the vapor phase, and P is the total
pressure.

The fugacity of component i in a non-ideal liquid solution is given, at low pressures,
by

SfE=vxiPf (1.3)
where x; is the mole fraction and y, is the activity coefficient of component 7 in the
liquid phase, and P; is the vapor pressure of pure liquid i.

Substituting Egs. (1.2) and (1.3) into Eq. (1.1), the vapor-liquid equilibrium for a
non-ideal homogeneous system at low pressures becomes

Py;=yx; P} i=12---,N. (1.49)

The activity coefficient for a component in a non-ideal liquid solution can be cal-
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2 VAPOR-LIQUID EQUILIBRIA

culated by knowing both the vapor and liquid phase compositions, the equilibrium
pressure, and the temperature. The vapor-liquid equilibrium can then be calculated by
cxpressing the activity coefficient as a function of the liquid composition.

1.2 HETEROGENEOUS SYSTEMS

Systems showing large deviations from the ideal liquid solution (eg., n-butanol-
water, ethyl methyl ketone-water) are heterogeneous systems with two liquid phases
in vapor-liquid equilibria. The criterion of vapor-liquid-liquid equilibrium for an N
component system is given by

f! (fugacity of component i in the vapor phase)
= £} (fugacity of component i in liquid phase I)
= ' (fugacity of component i in liquid phase II)
i=12,.--,N (1.5)
where superscript V refers to the vapor phase, and I, II to liquid phases I, II. Sub-
stituting Egs. (1.2) and (1.3) into Eq. (1.5), the vapor-liquid equilibrium is given by
Py, = y'xlPf = yix'Pf i=1,2,--,N (1.6)

where x}, x}' are the mole fractions and 7}, y!' are the activity coefficients of component
i in the two liquid phases I and II, respectively.

1.3 VAPOR-PHASE ASSOCIATION

Because systems containing carboxylic acids, such as acetic acid and propionic
acid, contain associating components, the fugacity of components in the vapor phase
cannot be obtained by Eq. (1.2), even at low pressures, and must be derived from
chemical theory. Let us assume that a binary system consists of components 4 and B,
and that the components give rise to the following associations and solvation (cross-
association):

pAl a2 Ap’ pBl 2 Bp (1.7)
PA; + qB, 2 A,B, (1.8)

where 4,, B, are the monomers, A4, and B, are the p-mers, and 4 ,B, is the (p + q)
complex of components A, B. Also, assuming that the associating gases are in ther-
modynamic equilibrium, Eq. (1.9) has been derived by Prigogine and Defay.!’

fi=rn. K= (1.9)



VAPOR-PHASE ASSOCIATION 3

where £, fy are the fugacities of components 4, B, and f},, f3, those of monomers
A,, B, in the vapor phase.

Fugacities of monomers in the vapor phase are given by the following equations of
Marek and Standart?’ and of Nothnagel et al.>

fh, = Poula,  f5, = Popis, (1.10)

where ¢ ,, @p, are the fugacity coefficients and #,,, 7, are the true mole fractions of
monomers 4,, B, in the vapor phase. Assuming that ¢, = @p, = 1 at low pressures,
Eq. (1.10) can be re-written as

fi, = Pnay S5, = Png, (1.11)
The fugacity of component 4 in the liquid phase is given by
f4 = vax4@%Pji exploy(P — PY/RT]. (1.12)

A similar equation may also be obtained for component B. In Eq. (1.12), ¢% is the
fugacity coefficient of component A4 at vapor pressure P and temperature 7, while
v4 is the liquid molar volume of pure liquid 4. Then, assuming that exp[v,(P — P%)/
RT)= 1 and o} = f3/P5 = f3,/Ph = 0% Pins/Pi = ¢uns, = n%y Eq. (113)
derives from Eq. (1.12) for component 4. Similarly, the following equation is given for
component B:

f& =3, Pi%ss  f5=vsM3,P3Xs (1.13)

where n3,, np, represent the true mole fractions of monomers 4,, B, in the saturated
vapors of pure liquids 4, B.

The condition for vapor-liquid equilibrium is given as f{ = f{, f3 = f& by Eq.(1.1).
Combining these relations with Eq. (1.9), the condition of vapor-liquid equilibrium for
a system containing vapor-associating components is given by

flo=r  fa. =I5 (1.14)

Therefore, substituting Eqgs. (1.11) and (1.13) into Eq. (1.14), the vapor-liquid equi-
librium for a system containing vapor-associating components is given by

Py, = yana,Paxs Png, = ygNp, PpXp. (1.15)

The true mole fractions can be obtained for associating substances in the vapor
phase by means of the associating-equilibrium equations coupled with the concept of
material balance. The problem with the calculation is the necessity to consider the
number of associations that may arise. We will consider dimerization association or
solvation here as it has been pointed out* that the formation of trimers or higher
aggregates has little influence on the calculations.



4 VAPOR-LIQUID EQUILIBRIA

Applying Egs. (1.7) and (1.8) for dimerization association and solvation, and
defining the equilibrium constant as K, we obtain
K, = 'IAz/P’in,’ Kp = 'IB;/P'hzz, (1.16)

Kup = N4, ,8,/Pra,Ns, (1.17)
where K,, Ky are the equilibrium constants for the associations shown in Eq. (1.7),
and K is the equilibrium constant for the solvation shown in Eq. (1.8). Also, 7,4,

"By N4, .8, are the true mole fractions of dimers 4,, B,, 4, B,. As the sum of true mole
fractions in the vapor phase is 1, the following equation is satisfied:

Nay + Nay + Nayp, + Mp, + 15, = 1. (1.18)

Next, in order to calculate the true mole fraction n%, in Eq. (1.13) for monomer 4,
in the saturated vapor of pure substance 4, we first determine the equilibrium at
vapor pressure P correponsing to temperature T as given by

Ky =n%/Pin%,  n3, +n3, =1 (1.19)

where n3, may be calculated by applying Eq. (1.20). Similarly, the true mole fraction
np, of monomer B, is given by Eq. (1.20).

—1+ /1 + 4K,P; g o= =Lt JT+4K,P5 (1.20)

Mds = 2K,P;, A 2K,P;

Thus, 14,, 7, can be evaluated from Egs. (1.15) and (1.20), and 1,,, 7g,, 14,5, from
Eqgs. (1.16) and (1.17), using the dimerization equilibrium constants K, Kz, K 5. The
true mole fractions so obtained must satisfy Eq. (1.18).

By using the true mole fractions, the stoichiometric vapor mole fractions of com-
ponents A and B in equilibrium with liquid compositions x, and xp may be obtained
from Eq. (1.21).

y, = Na, + 204, + N4y i
4 rlA, + 2'7A; + 2’1A1,Bl + ’731 + 2'1Bz’

_ ne, + 21, + N4, B,
Na, + 204, + 204, 5, + Mg, + 2np,

(1.21)

VB

Values of the dimerization equilibrium constants necessary for the calculations are
given below for some carboxylic acids:

Formic acid log K = —10.743 + 3083.0/7 (323K ~ 423K)*
Acetic acid log K = —10.931 + 3347.0/T (323K ~ 423K)®
Propionic acid log K = —10.834 + 3316.0/T (323K ~ 423K)"
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Where the observed dimerization equilibrium constant is not available, the equi-
librium constant for association can be predicted by applying Hayden and O’Connell’s
method.”’ The equilibrium constant K, for solvation is calculated by using the rela-
tion K5 = 2,/K,K; appearing in Prausnitz’ work.®
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Chapter Two

Liquid-Phase Activity Coefficients

2.1 ACTIVITY COEFFICIENT EQUATIONS

The liquid-phase activity coefficient is the most important requirement for vapor-
liquid equilibrium calculations, which describe the activity coefficient as a function
of liquid composition. Many studies have been undertaken in the past to determine
the dependence of the activity coefficient on liquid composition. Important activity
coefficient equations appear in the work of Prausnitz,'’ Null,?> and Hala et al.* In
the following we will consider the Wilson,*” NRTL,>’ and UNIQUAC® equations
published since 1964. Each of these allows the prediction of multicomponent activity
coefficients from binary data alone.

The Wilson equation. In this activity coefficient equation applicable to homo-
geneous systems, the activity coefficient of component i in an N component system is

given by
N N
Iny;, = —ln[z xinj:I +1-Y Nx"—A“— 2.1
=t Y XA
j=1
where
v; ( - u)
Ay = v—{exp[ TRT ] (Aij = 450 22)

In Eq. (2.2), (4;; — 4;) and (4;; — 4;;) are two Wilson parameters characteristic of
the components / and j, obtainable from binary data. The parameters (4;; — 4;;) are
assumed to be independent of temperature over a narrow temperature range. V;
is the liquid molar volume of pure component ;.

The NRTL (Non-Random, Two-Liquid) equation. This activity coefficient equation
is applicable to both heterogeneous and homogeneous systems. The activity coefficient
of component / in an N component system is given by

N
2 T_“ N x-G‘-- r;l ererrj
Iny, = Sfp— -+ Z F——| Ty — —— (2.3)

Z Gix, Z Gx, Z Gjx,
=1 =1 =1



e LIQUID-PHASE ACTIVITY COEFFICIENTS

where
Tji = (gji - 94)/RT (gji = gij)’ 24
Gj; = exp (—a;;T;) (o = ay5). (2.5)

In Eq. 2.4), (9;; — 9:») and (g;; — g;;) are two NRTL parameters (equivalent to
Wilson parameters) characteristic of the components i and ;. In Eq. (2.5), a;; is a third
parameter, a constant varying roughly between 0.2 and 0.47 according to the type of
sysem concerned.

The UNIQUAC (Universal Quasi Chemical) equation. In this activity coefficient
equation, applicable to both heterogeneous and homogeneous systems, the activity
coefficient of component i in an N component system is given by

_ %

P
I v @6)
h ; Okt

Iny; = lnﬂ 2q,l

#t!
+q‘.|:l—ln<§ )

xJIJ

where
Iy = %("i -q)— (=1, z=10 2.7
N N
0; = qu'xr/ '21 qjXjs ¢ = rixi/ Z FjXj, (2.8)
j= =
T;; = eXp l:—(—u%]fl”)] (i = uy;). 2.9)

In Eq. (2.9), (u;; — u;;) and (u;; — u;;) are two parameters characteristic of the com-
ponents i and j that can be obtained from binary data. In Eq. (2.8), 0, is the area frac-
tion and ¢; the segment fraction; r; and g; are measures of, respectively, molecular
van der Waals volumes and molecular surface and are constants for a pure component.

The binary parameters necessary for predicting vapor-liquid equilibria by the three
activity coefficient equations discussed above appear in the following references:

Wilson [7, 8,9, 10, 11]
NRTL [7, 10, 12]
UNIQUAC [6, 7].

Commonly, N(N — 1) parameters are necessary for predicting the vapor-liquid
equilibria for an N component system if the equation used is like the Wilson, NRTL,
and UNIQUAC equations, which contain just the parameters characteristic of a
binary system and which predict the vapor-liquid equilibrium of multicomponent sys-
tems only from binary data. As N(V — 1)/2 binary data are needed to determine these



