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PREFACE

In this book we introduce the ideas and methods of the theory of
linear transformations in Hilbert space by using them to present
the elements of the theory in a finite dimensional vector space. We
discuss problems fundamenntal in the study of general abstract
linear spaces and use the powerful methods appropriate to the
consideration of these spaces; both problems and methods, how-
ever, are simplified by our restriction to an n-dimensional space.

Some particular features of the presentation msy be mentioned.
The main results in the theory of linear transformotions, namely,
the spectral representations of Hermitian transformations, and the
canonical representations and commutativity properties of general
linear transformations, are developed here without the use of
determinants because determinants can be used in Hilbert space
only in very special cases. A concrete vector space has been chosen
in preference to an abstract space so that the ideas may be more
readily grasped, but the coordinates of vectors and the elements
of matrices occur only exceptionally in the proofs; most of them
could be applied unchanged for an abstract space. By defining
the scalar product at the start instead of developing first the

. descriptive properties of linear manifolds and transformations (an
alternative course with some obvious advantages, followed in the
books by G. Julia [V]*and P. R. Halmos [II1]) we can introduce the
Schmidt orthogonalization process at an early stage and take
advantage of its appeal to geometrical intuition; for instance, we
obtain & natural geometrical illustration of the problem of the
solution of a system of homogeneous linear equations. The resulting
development on geometrical lines of the caloulus of linear manifolds
replaces the familiar and more formal calculus of matrices.

We use only orthogonal coordinate systems because the use of .
oblique coordinates would lead to difficulties in later generalizations
to Hilbert space. This means that we consider general linear
transformations only as mappings of the space on itself, while we
interpret unitary transformations both as congruent mappings of
thespaceon itself and also as transformations of coordinatesystems.

® Numbers in square brackets refer to the list of references at the end of the
book. Roman numbers are used for books and arabic numbers for papers.
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Finally, although we deal with algebraical problems, we have not
excluded analytical methods in view of their importance for certain
problems in Hilbert space, and we use them to obtain the spectral
representations of Hermitian transformations.

The book presents a self-contained account of the theory.of
linear transformations in finite dimensional vector space. Chapter I
contains the elementary general properties of linear manifolds and
linear transformations. Chapter II introduces the algebraical treat-
ment of the normal transformations (with the Hermitian and
unitary transformations as special examples) and of general and
orthogonal projectors. In Chapter III the spectral representations
of Hermitian and normal transformations are obtained by the
enalytical methods due to Hilbert and based on the property of tho
eigen-values of a Hermitian form as its maxima in certain closed
sets of the vector space. The methods are developed further to give
inequalities for the eigen-values that have proved of value in recent
computational work. The chapter closes with a discussion of the
functional calculus for Hermitian and normal transformations. In
Chapter IV we return tc algebraical methods in dealing with the
more complicated problem of the reduction of a general linear
transformation to the Jordan canonical form. The exiatence of
eigen-values is established here, without the introduction of
determinants, by the use of arguments contained in recent papers
by N. Dunford and one of the present authors ([16] and [23]). The
spectral representations of normal transformations are obtained
again, this time as special examples of the representations of linear

- transformations with simple elementary divisors, and the chapter

ends with a discussion of the commutativity properties of general
linear transformations. These results include a series of theorems
for linear transformations with simple elementary divisors, and a
formulation, in terms of the complete reduction of the linear
transformation A, of the comnmutativity properties of the poly-
nomials p(4), for which we have found no reference. The theme of
Chapter I11 is taken up again in Chapter V, which is concerned with
the spectral representation of the pencil H—AG, wherc H and &
are Hermitian ‘transformations of which G is positive definite;
a familiar problem with various applications in mathematical
physics. The application to the dynamical thecry of small oscilla-
tions is dealt with in detail in order to illusirate the significance of
the inequalities of Chapter IIf. The intreduction, in Chapter V, of

ﬂijlfiljf, TSR BPDEIE VT Al www. ertongbook. i
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a generalized n-dimensional vector space in which the scalar product
is defined by a positive definite Hermitiar: form foreshadows some
of our later work on abstract spaces and provides a link between
this work and the elementsry approach of Chapter I. Moreover, it
leads to the theorem given towards the end cf Chapter V, that every
linear transformation with simple elementary divisors can be
considered as a normal transformation in a vector space in which
the scalar product is suitably defined.

The notes at the end of the book give references for the main
results. They are selected somewhat arbitrarily and make no claim
to completeness. No references to the notes are made in the text;
they are meant to be consulted after the reading of each chapter.

H.L.H.
M.E.G.

CAMBRIDSE
September 1947
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CHAPTER 1

LINEAR MANIFOLDS AND LINEAR
"TRANSFORMATIONS IN %,

§1. VECTORS AND OPERATIONS ON VECTORS

1-0. In these first four chapters we deal for the most part with
well-known algebraical problems which we describe in geometrical
terms and interpret in a space of n-dimensional complex vectors
(an n-dimensional vector space). Our object is to introduce the
ideas and technique that are characteristic of the theory of Hilbert
space, and so we give the proofs as far as poasible without using
the coordinates of vectors or the elements of matrices; most of them
would have taken the same form if we had defined the vector space,
as Hilbert space is defined, in terms of its abstract properties. We
Jillugtrate the applications of the general theory by considering for
n-dimensional vector space such familisr problems as those of the
solution of systems of homogeneous and non-homogeneous linear
equatious and of the transformation of a Hermitian form to principal
axes, but we do not give the familiar arguments using determinants
because they are not in keeping with our development of the theory
and cannot be generalized for Hilbert space. Indeed, we have
dehbera’oely avoided the use of determinants throughout the
book.

It will be seen that we define a metric form for the space at a very
early stage in the discussion, and that this leads us at once to the
idea of orthogonality and to the introduction of Schmidt’s ortho-
gonalization process which plays an essential part in the theory of
bounded linear transformations in Hilbert space.

1-1. Definition of a vector. We define a vector x as an ordered
system of n complex numbeis x,,x,, ...,z,, called the coordinates of
the vector, and we write z = (z,, - Ty oo z,). We define the zerg vector
as 0=(0,0,...,0).

. Asystem - complex numbers may also be called & pomt and
the point (0,0, ..., 0) may be called the ongm

When x'=(x,,z,, .,&,;) we write z=2z' if, and only if, z,=z,
forv = 1,2,...,n. We write Z = (%,,%,, ..., Z,), where Z, denotes the
number conjugate to z,, and we say that the vector Z is conjugate
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to z. We say that z is real if z = Z; that is, if the n coordinates z,
are all real.

Throughcut the book vectors are represented by letters of the
‘same types as those representing oomplex numbers, but in the case
of vectors suffixes are raised. Thus, z!,2%, ...,2" denotes a set of »
vectors, while % numbers (for example, the ooordmates ofa vector)
are denoted by #,,z,, ..

The set of all vectors x deﬁned by » coordinates forms the n-
dimensional vector space which we denote by B,. We write ze %8,
to mean that 2 is an element of %8, and, more generally, we write
zeX if z is an element_of any set ¥ of vectors.

Sets of vectors are denoted by German capital letters; sets in the
plane of complex numbers, such as curves and domains, are
denoted by small German letters.

1-2. Multiplication of a vector by a number. If x is any
vector, & = (%, %,, ...,%,), and if @ is any complex number, then x
multiplied by « is defined as the vector (ax;,ax,,...,ax,) and is
written as ax. In particular, we write —x for axz when = —1.

The vector ax coincides with z if & =1; it is the zero vector if,

and only if, either ¢ =0 or =0. We see at once that ax = &%, and
that, if # is any complex number, then a(fz) = f(ax) = afx.
~ 1-3. Addition of vectors. If
X = (221, g, j--:x'n) and y= (%1 Ya» "'»yn)»
then the sum of = and y is defined as the vector
T4y = @+ Y1, Ta+Yz -5 Tnt+Yn):

We write x—y for z+(—y). We see that x—z = 0..

1-31. The commutative, associative and distributive laws of
addition all hold, since we obtain at once, for vectors %, ¥,z and any.
numbers «, 5,

z+y=y+z, (@+y)+z=a+(y+2z)
~and a(z+y) = ax+ay, (a+p)z=az+px.

If z+y=2z+2, then y =z
~ 1-32. For any non-real vector z there are two real vectors z and y

such that z = z +4y; they are

z=46+7), y=p (-3
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’
1-33. The vectors
wl=(1,0,...,0), u?=(0,1,0,...,0), ..., w"=(0,0,...,0,1)
are called the coordinate vectors. We have, for any vector z,
n
z= Y z,u. (1-:33-1)

p=1

1-4. Definition of the scalar product of two vectors. The
scalar product of two vectors z and y is a complex number associated
with the vectors. We denote it by (z, %) and define it so that it shall
satisfy the following three conditions for any vectors z, y, z and any
number a: ' ‘

) ) =any), () @+0) =@ +@.D,
(ill) (?/:-’1’) = (x, y) i (5’?7)‘
" The conditions (i) and, (iii) imply that
(z,09) = (o, 2) = Ay, 2) = Wz, Y), - (1-41)
and (u) and (iii) imply that
@ y+2) =(y+2,%) = (y,x)+(z z) = (x,y) +(,2). (1-42)

We now add the definition of the speoial scalar products of the
coordinate vectors w” by writing

(iv) (4, w) =4, (4v=12..n),
where here, and throughout the book, & w18 the Kronecker symbol
with the interpretation '

0 =0 (r+v), 8p=1 (&=v)
Writingz = ¥ o,y = f} y,w we see by (i), (ii) and (iv) that
~ y=1 y=1 A .
(z,%) = z, and hence, by (1-33-1), that & = Z (z w)w. We also
obtain the analytical expression for the sca.lar product

@H=3 = @,y (W, ur) = 3 3 2,9,
ve=1 p==1 ve=1 p=1

n . -
= 2 &Y, ' (1-4-3)

ym]

which could have been used for the definition. Had we defined the
scalar product by (1:4-3) we should have deduced at once the
conditions (i), (ii), (iii) and (iv).

We deduce at once from the condition (iii) that (z,y) is real if
x and y are both real and that (y,2) = 0 if (z,y) = 0.

x

e oNIREE, 7B SE #EPDRIE U 0] : www. ertongbook.



4 ¥ OPERATIONS ON VECTORS

1-41. Definition of the absoluie value of a vector. The
absolute value, or norm, cf avector x is defined as the nen-negative real

il Bl . (z, 2)t = (v | z, P)ﬁ

We also call || z || the length of the vector z. We see that || z | = 0if
and only if 2 = 0. If | 2| = 1 we say that x is a unit vector; the
coordinate vectors are unit vectors. The absoluie value || z—y/| is
called the distance between the points, or vectors, x and y. Clearly,
lz—y| = | y—=].

By 4 (i) and (1-4-1), we have

 Jael? = (an,a2) = 0z, 2) = [a P 2],
and hence flax || = ||| z]. (1-41-1) .
We notice that this proof of (1-41-1) is independent of the speela.l
condition 1-4 (iv) for the scalar product.

1-42. For any vectors z and y and any number A we have
lz+2y|? = (@ + Ay, 2+ Ay)
=l 2|*+ Ay, 2) + Az, y) + AX | y |2
20,

with equality if, and only if, x+Ay = 0. Taking ly]+0 and
‘Al ¥ ||*=—(x,y), we obtain-

t=l*ly 12~ 9 2> 0,
and we deduce thai ‘

@yl <l=]lyl, (1-42:1)
with equality if, and only if, one of the vectors x and y is zero or is
a numerical multiple of the other.

The inequality (1-42-1) follows from the conditions (i), (u) and (iii)
of 1-4 for the scalar product. If cordition (iv) is also used, (1-42-1)
follows from (1-4-3) by the Cauchy inequality.

If neither 2 nor y is zero, and if we write

=9 -
| [Tyl =" (422
0 is'real 50 long as (7, y) is real, and we can then interpret it as the
angle between the vectors x and y. Thus the scalar product defines
‘both length and angle; it is the metric form in B,,. ,
If (x, y) = 0 we say that the vectors x and y are orthogonal. Thus,
condition (iv) of 1-4 means that any two of the coordinate vectors
u” are orthogonal. If z = ay +0 we say that x and y are parallel.
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1-43. The absolute value sstisfies the ‘tri;lixgle inequality’

lz+yl<l=|+]yl.
since, by (1-42-1), '
lz+y*= +y,2+) = @2+ @ +@ D+, 9
<lzi*+2|@y|+lyP<hz|*+2] =] |y} +]|y|®
= (=] +ly ] <
When z and y are orthogonal vectors we cbtain the Theorem of
Pyth
e P e LI 1Y

1:5. We now prove that the space %, is complete and separable.
We shall not again refer explicitly to these propefties of n-dimen-
sional vector space. We introduce them here in preparation for the
discussion of the same important properties of Hilbert, vector space.

1-51. Definjtion of a limit vector of a sequence. We say that
the vector & of %8, is the limit vector of the sequence {xm™} of vectors
of B, and we write lim 2™ = &, if lim |a*"—2] = 0.

m=-> o

m—> .

. It follows from 1-43 that a sequence cannot have two distinct
limit vectors. For suppose that £ and § are both limit vectors of the
sequence {z™}, Then, for any integer m, .

h2~g| <] #-a]+]2m-g
as m—>00, 8o that || £~ 7| = 0 and ¢ coincides with #.

-0

1-52. THEOREM. Zei im a™-= £ and let y be any vector of -

m —> ®©

Then lim (2™, y) = (%,y).
: 7 —> ©
Proor. We have, by 1-4 (ii) and (1-42-1),
@™ 9) - @) | =@~y |<]|em-2] | y] >0
as m—> 0. ' :

1:53. TaEOREM. The space B, is complete; thai is, if a sequence {&™} of
vectors of B,, satisfies the condition that there corresponds to any positive number
€ an inieger my such that || z®— || < € for p, g=my(€), then there exists a vector
% of B, which i the limit vector of the sequence. e

n
ProoF. Let 2™ = X z,,u* Then
y=1

n - ; \ &
| El.lx..,—w..l’)
y‘-

o=z —2tl<e (p,g2m,),
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end so lim z,,, existe; denote it by £, and write- 2 = E #,u”. We obtain

m=—>00 . y-l
1-ami=( £ (4-zml2)">0
Pors

as m -» o0, and this gives the desired result.

A sequence that satisfies the condition of Theorem 1-53 ig said to be
convergeni. We readily see that a sequencc that has a limit vector 2 is
convergent and we say that it converges to &. '

1'6. Definition of the closure of a set of vectors, of a closed set
and of an everywhere dense subset. Let € be any set of vectors of B,,.
The set obtained by adding all those limit veclors of sequences of elements of ©
that do not belong to  is called the closure of S; we denote it by &. If &
coincides with & we say that G is closed.

Let € be any set of vectors of B, snd let S be a subset of €. If € is con-
tained in & we say that S is everywhere dense in €.

A necessary and sufficient condition that & is everywhere dense in € is
that there corresponds to any element z of € and any positive number ¢ an
element s of S such that ||z —g]| < ¢, for this condition is equivalent to the
condition that z is either an element of & or else the limit vector of a sequence
of elements of &.

1-61. TexorEM. The space B, is separable; that 13,there exists a denumerably
 infinite set S of vectors of B,, that is everywhere dense in B,,.

Proor. Consider the set S of all vectors ¢ of B, of which the coordinates
8, = 0, +17, are formed from rational numbers o, and 7,. Now the set of
rational numbers is denumetable and so is the set of ordered pairs of
rationals. Thus the set of the numbers g, is denumerable. The elements of S
may be regarded as ordered sets of » numbers s,,, so that & is also denumerable.
Further, since we can express any complex number as the limit of a sequence
of numbers s,, it follows that we can express any vector of B, that is not a
vector of & as the limit vector of a sequence of vectors of &. Thus the set ©
fulfils the requirements of the theorem.

§2. LINEAR MANIFOLDS

2-0. Definition of a linear manifold. A4 set I of vectors of B,
18 called a linear manifold (denoted by the abbreviation L.M.) if,
whenever a eI and beM, then also ameim and a+beI, where a
is any complex number.

Ifal,ad,..., a" are any vectors of %n and a,, &y, ..., @, any complex
numbers, then the vector «,a'+a,a®+...+a,a” is said to be &
linear combination of the vectors al,a?,...,a". It follows imme-
diately from Definition 2-0 that, if al,a?, ..., a" are contained in the
L.M. 9, then so is any linear combination of these vectors. In
particular, any L.M. contains the zero vector.
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If the L.M. 9% consists of all linear combinations of the vectors
al,al, ..., a” we write it as MM = [al,a?, ...,a’] and we say that I is
spanned by the vectors a',a?,...,a”. The space B, is the L.M.
spanned by the coordinate vectors, so that 8, = [u?,u3,...,u"*].
The zero vector constitutes a L.M. which we denote by I = D.

If M and M’ are L.M.’s such that every vector of each is contained
in the other we write S}’ = M; if every vector of M’ is contained
in M we write M’ < M and M2 IP'. If there iz a vector of P that
is not contained in IR’ while every vector of MM’ is contained in M
we write ' <R and M>IR'. Plainly, the L.M. O is contained in
every L.M. I so that we always have M 2.

2:1. Definition of linear dependence and linear inde-‘
pendence of vectors. The vector z is said to be linearly dependent
on the veotors a',a?, ...,a" if it is a linear combination of these
vectors; that is, if there exist numerical coefficients «, such that
x= é a,@. The vectors al,a?, ...,a’ are said to be linearly de-.

ve=]

pendent, or to form a linearly dependent set, if there exlst numeriocal
coefficients a,, not all zero, such that
Z a,a =0. - (2:1-1)
y=1
The vectors a',a?, ...,a” are said to be linearly independent, or to
form a linearly independent set, if a relation (2-1-1) implies thet all
the coefficients «, are zero.

It follows at onoe that any subset of & linearly independent set
of vectors is & Linearly independent set. We also see that a linearly
independent set cannot contain the zero vector, since the relation
@0 = 0 does not imply that o =0. An example of a linearly
mdependent set of n vectors is the set of coordinate vectors
ul,ub, ..., um

2-11. The veétors al,a?, ..., 7 sz linearly dependent or linearly
independent according as al,a?, ...,a" are linearly dependen't or _
linearly independent. :

2:12. Let Mbea L. M. inB,,, and let mdenotethe settwm
conjugate to vectors of 3. Then I is also a L.M. for, and
beM, then zaeM and a+be for every number a, and so
Zaed and 3+beM. . SO

If M = [a%,a?, ...,a"] then, clearly, I = [a',d3, ...,a"]. We say
that the L.M.’s Ik and 3% are conjugate to one another.
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2:2. Definition of a basis of a L.M. The set of vectors
al,a?,...,a" is called a basis of the L.M. I if the following two
oonditions are satisfied:

(i) the vectors a*,a?,...,a" are linearly independent,

(ii) M = [at,a?,...,a"].

The set of coordma.te vectors «” is a basis of the LM B,

2-21. We prove by the next two t.heorems that every L.M. in %,
has a basis of not more than n elements, but we need first the
following lemms.

LeMma. If the set of vectors ¢, a?, ...,a" 18 a basis of M, and if
b= B0 + 502 +... + .o,

where B, is not zero, then the set of vectors a*,a?, ..., a1, b,@*}, ..., 0"
18 also a basis of M. ‘

Proor. Withous loss of generality we may take v = 1 and #, +0.
We first show that if there exists a relation

: T ooybtaat+ . taa" =0
then all the coefficients are zero. We substxtube for b in the relation
and obtain

: o frat + “z+°‘1ﬂa)a"+ (et f)am = 0.
But, since a',a?, ...,a" are linearly independent, and since f§; + 0,
this gives successiveiy a; = 0, 23 = 0, ...,a, = 0. Thus the vectors
b,a?, ...,a" are linearly independent. ]

Now any veoctor linearly dependent on b,a?, ...,a" belongs to M

and further, since svery element of M is lmes.rly dependent-on
at, a,‘I os 0 and since ;

ﬂ (b — Bya® —...—‘ﬂ,a”),

it follows that every element of % is linearly dependent on
b,a?,...,a". Thus these vectors form a basis of .

. 23 TurorEM. Let Mbea L.M.in B, with a basis of r elements.
Then any set of r linearly independent elements of I is a basis of m
and any set of r+1 elements of M is linearly dependent."
Proor. Let M = [a', 4%, ...,a"] and let b4, b3, ..., b” be any set of r
nnea.rly independent elements of M. Then
bl = a0t + 0002 + ... + 0y,
where at least one of the coefficients, say a,,, is not zero, since no

.
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element b# can he zero because the b’s are linearly independent.
Then, by Lemma. 2-21,
= [a',a?, ...,a"] = [b%, a2, ..., 7).
Suppose we ha.ve proved that
' We = [b%,8%,...,05 L, a0, ...,07),

where 2<s<7. Then we have

0 = B+ 4 By ey b b o af L o,
where the coefficients o,, are not all zero since b3, 5%, ...,5° are
linearly independent, and We may assume a,,+ 0. Then, by Lemms.
2 21 M = [bl bz bc a3-|1 . .’ar] ;
We obtain in this way, by an mduotmn process, M = [bL,82,...,b7],
" and we see that the elements b, b2, ..., b form a basis of I smce by
hypothesis, they are linearly mdependent

It follows at once that no set of 41 elements of M is linearly
independent.

2:31. COROLLAEY OF THEOREM 2-3. Every set of n+ 1 vectors of
B, 18 linearly dependent.

Proor. The corollary follows at once from Theorem 2-3, sines the
coordinate vectors u!, 42, ..., u™ form a basis of B,.

2-4. THEOREM. There corresponds to.every L.M. W in B, (with the
trivial exception M = D) a positive integer r, where r <n, which is the
maximum number of linearly independent elements contasned in .
Every set of r linearly independent elements of Misa bcms of MM, and
every basis of M has exacily r elements.

Nore. This theorem establishes the existence of a basig of at
most » elements for every L.M. in 8B,. We describe a method of
constructing such a basis in 2-5.

Proor. By Corollary 231, every set of n+1 vectors of B, is
linearly dependent so that MM cannot contain a linearly inde-
pendent set of more than »n vectors. On the other hand, any non-
zero vector of M constitutes a linearly independent set. Henoa,f
9 + ©, there are linearly independent subssts of ¢, and the n
of elements they contain has a greatest value 7, wherqus»

Now let.al,a?, ..., a” be any set of r linearly mdependent elementn'
of M and let = be any other element of k. The r-+1 elements
z,a',a?,...,a" cannot be linearly independent, and there exists -
therefore a relation of the form az+g,a*+ ... + f,a" = 0 in which

gs I J: o rtongbook.



