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Preface

The origins of algebra are usually traced back to Muhammad ben Musa al-Khwarizmi,
who worked at the court of the Caliph al-Ma’mun in Baghdad in the early 9th Century.
The word derives from the Arabic al-jabr, which refers to the process of adding the
same quantity to both sides of an equation. The work of Arabic scholars was known in
Italy by the 13th Century, and a lively school of algebraists arose there. Much of their
work was concerned with the solution of polynomial equations. This preoccupation
of mathematicians lasted until the beginning of the 19th Century, when the possibility
of solving the general equation of the fifth degree in terms of radicals was finally
disproved by Ruffini and Abel.

This early work led to the introduction of some of the main structures of modern
abstract algebra, groups, rings and fields. These structures have been intensively
studied over the past two hundred years. For an interesting historical account of the
origins of algebra the reader may consult the book by van der Waerden [15].

Until quite recently algebra was very much the domain of the pure mathematician;
applications were few and far between. But all this has changed as a result of the rise
of information technology, where the precision and power inherent in the language
and concepts of algebra have proved to be invaluable. Today specialists in computer
science and engineering, as well as physics and chemistry, routinely take courses in
abstract algebra.

The present work represents an attempt to meet the needs of both mathematicians
and scientists who are interested in acquiring a basic knowledge of algebra and its
applications. On the other hand, this is not a book on applied algebra, or discrete
mathematics as it is often called nowadays.

As to what is expected of the reader, a basic knowledge of matrices is assumed
and also at least the level of maturity consistent with completion of three semesters
of calculus. The object is to introduce the reader to the principal structures of mod-
ern algebra and to give an account of some of its more convincing applications. In
particular there are sections on solution of equations by radicals, ruler and compass
constructions, Polya counting theory, Steiner systems, orthogonal latin squares and
error correcting codes. The book should be suitable for students in the third or fourth
year of study at a North American university and in their second or third year at a
university in the United Kingdom.

There is more than enough material here for a two semester course in abstract
algebra. If just one semester is available, Chapters 1 through 7 and Chapter 10 could
be covered. The first two chapters contain some things that will be known to many
readers and can be covered more quickly. In addition a good deal of the material in
Chapter 8 will be familiar to anyone who has taken a course in linear algebra.

A word about proofs is in order. Often students from outside mathematics question
the need for rigorous proofs, although this is perhaps becoming less common. One
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answer is that the only way to be certain that a statement is correct or that a computer
program will always deliver the correct answer is to prove it. As a rule complete
proofs are given and they should be read, although on a first reading some of the more
complex arguments could be omitted. The first two chapters, which contain much
elementary material, are a good place for the reader to develop and polish theorem
proving skills. Each section of the book is followed by a selection of problems, of
varying degrees of difficulty.

This book is based on courses given over many years at the University of Illinois
at Urbana-Champaign, the National University of Singapore and the University of
London. I am grateful to many colleagues for much good advice and lots of stimulating
conversations: these have led to numerous improvements in the text. In particular I
am most grateful to Otto Kegel for reading the entire text. However full credit for
all errors and mis-statements belongs to me. Finally, I thank Manfred Karbe, Irene
Zimmermann and the staff at Walter de Gruyter for their encouragement and unfailing
courtesy and assistance.

Urbana, Illinois, November 2002 Derek Robinson
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Chapter 1
Sets, relations and functions

The concepts introduced in this chapter are truly fundamental and underlie almost
every branch of mathematics. Most of the material is quite elementary and will be
familiar to many readers. Nevertheless readers are encouraged at least to review the
material to check notation and definitions. Because of its nature the pace of this chapter
1s brisker than in subsequent chapters.

1.1 Sets and subsets

By a set we shall mean any well-defined collection of objects, which are called the
elements of the set. Some care must be exercised in using the term “set” because
of Bertrand Russell’s famous paradox, which shows that not every collection can be
regarded as a set. Russell considered the collection C of all sets which are not elements
of themselves. If C is allowed to be a set, a contradiction arises when one inquires
whether or not C is an element of itself. Now plainly there is something suspicious
about the idea of a set being an element of itself, and we shall take this as evidence
that the qualification “well-defined” needs to be taken seriously. A collection that is
not a set is called a proper class.

Sets will be denoted by capital letters and their elements by lower case letters. The
standard notation

aeA

means that a is a element of the set A, (or a helongs to A). The negation of a € A is
denoted by a ¢ A. Sets can be defined either by writing their elements out between
braces, asin {a, b, c, d}, or alternatively by giving a formal description of the elements,
the general format being

A = {a | a has property P},

i.e., A is the set of all objects with the property P. If A is a finite set, the number of
its elements is written

|Al.

Subsets. Let A and B be sets. If every element of A is an element of B, we write

ACB
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and say that A is a subset of B, or that A is containedin B. If A C B and B C A, so
that A and B have exactly the same elements, then A and B are said to be equal,

A=B.

The negation of this is A # B. The notation A C B isused if A € B and A # B;
then A is a proper subset of B.

Special sets. A set with no elements at all is called an empty set. An empty set E is
a subset of any set A; for if this were false, there would be an element of E that is not
in A, which is certainly wrong. As a consequence there is just one empty set; for if £
and E’ are two empty sets, then E C E" and E’ C E, so that E = E’. This unique
empty set is written

Q.

Some further standard sets with a reserved notation are:
N, Z, Q, R, C,

which are respectively the sets of natural numbers 0, 1,2, ..., integers, rational num-
bers, real numbers and complex numbers.

Set operations. Next we recall the familiar set operations of union, intersection and
complement. Let A and B be sets. The union A U B is the set of all objects which
belong to A or B (possibly both); the intersection A N B consists of all objects that
belong to both A and B. Thus

AUB={x|x€ Aorx € B},

while
ANB={x|x e Aandx € B}.

It should be clear how to define the union and intersection of an arbitrary collection
of sets {A, | A € A}; these are written

U A;L and ﬂ A)\.

AEA AEA

The relative complement of B in A is
A—B={x|xeAandx ¢ B}.

Frequently one has to deal only with subsets of some fixed set U, called the universal
set. If A C U, then the complement of A in U is

A=U — A.
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Properties of set operations. We list for future reference the fundamental properties
of union, intersection and complement.
(1.1.1) Let A, B, C be sets. Then the following statements are valid:
(i) AUB=BUAand AN B = BN A (commutative laws).

(i) (AUB)UC =AU(BUC)and (AN B)NC = AN (B NC) (associative
laws).

(i) AN(BUC)=(ANB)UANC)and AUBNC)=(AUB)N(AUC)
(distributive laws).

(iv AUA=A=ANA.
(v) AUN=A ANPh =0

Vi) A = (Usen Br) = Miea(A = Bi) and A = ((Nyen B2) = Usea(A = By)
(De Morgan's Laws).l

The easy proofs of these results are left to the reader as an exercise: hopefully

most of these properties will be familiar.

Set products. Let A}, As, ..., A, be sets. By an n-tuple of elements from Ay, Az,
.. Ay is to be understood a sequence of elements ay, as, .. ., a, with a; € A;. The
n-tuple is usually written (ay, az, . .., a,) and the set of all n-tuples is denoted by

Al X Ay x -+ X Ay.

This is the set product (or cartesian product) of Ay, Aa, ..., A,. Forexample R x R
is the set of coordinates of points in the plane.
The following result is a basic counting tool.

(L.1.2) IfA). A2, ..., Ay arefinite sets, then |A| x Ay x---x Ap| = |A1]-|A2] ... |Aul.

Proof. In forming an n-tuple (aj,az, ..., a,) we have |A| choices for aj, |A;|
choices for as, .. ., |A,| choices for a,. Each choice of g;’s yields a different n-tuple.
Therefore the total number of n-tuples is [A|| - |A2]...|Ax]. m]

The power set. The power set of a set A is the set of all subsets of A, including the
empty set and A itself; it is denoted by

P(A).

The power set of a finite set is always a larger set, as the next result shows.

! Augustus De Morgan (1806-1871)
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(1.1.3) If A is a finite set, then |P(A)| = 2!Al.

Proof. Let A = {a;,as,.... ap} with distinct ¢;’s. Also put I = {0, 1}. Each subset

B of A is to correspond to an n-tuple (i1, iz, ..., in) with i; € I. Here the rule for
forming the n-tuple corresponding to B is this: i; = lifa; € Bandi; =0ifa; ¢ B.
Conversely every n-tuple (i, i, ..., in) with i; € I determines a subset B of A,

definedby B = {a; | 1 < j < n, i; = 1}. It follows that the number of subsets of
A equals the number of elements in I x [ x --- x I, (with n factors). By (1.1.2) we
obtain |P(A)| = 2" = 241 O

The power set P(A), together with the operations U and N, constitute what is
known as a Boolean® algebra: such algebras have become very important in logic and
computer science.

Exercises (1.1)
1. Prove as many parts of (1.1.1) as possible.

2.Let A, B,C be sets suchthat AN B =ANCand AUB = AU C. Prove that
B =C.

3.1f A, B. C are sets, establish the following:
(A)(A—=B)—C=A—-(BUC).
b)A-(B-C)=(A-B)UANBNC().

4. Thedisjoint union A® B of sets A and B isdefined by therule A@B = AUB—ANB,
so its elements are those that belong to exactly one of A and B. Prove the following
statements:

(A)AGA=0V.ABB=B&A.

b)(ADB)SC=A8(BaC).

©ADPBNC=ANC)B(BNC).

1.2 Relations, equivalence relations and partial
orders

In mathematics it is often not sufficient to deal with the individual elements of a set
since it may be critical to understand how elements of the set are related to each other.
This leads us to formulate the concept of a relation.

Let A and B be sets. Then a relation R between A and B is a subset of the set
product A x B. The definition will be clarified if we use a more suggestive notation:
if (a. b) € R, then a is said to be related to b by R and we write

aRb.

JGcorgc Boole (1815-1864)
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The most important case is of arelation R between A and itself; this is called a relation
on the set A.

Examples of relations. (i) Let A be a set and define R = {(a,a) | a € A}. Thus
aj R a; means that a; = a; and R is the relation of equality on A.

(ii) Let P be the set of points and L the set of lines in the plane. A relation R from
P to L is defined by: p R ¢ if the point p lies on the line ¢. So R is the relation of
incidence.

(iii) A relation R on the set of integers Z is defined by: a R b if a — b is even.

The next result confirms what one might suspect, that a finite set has many relations.

(1.2.1) If A is a finite set, the number of relations on A equals 2041,

For this is the number of subsets of A x A by (1.1.2) and (1.1.3).

The concept of a relation on a set is evidently a very broad one. In practice
the relations of greatest interest are those which have special properties. The most
common of these are listed next. Let R be a relation on a set A.

(a) Risreflexiveifa Ra foralla € A.

(b) R is symmetric if a R b always implies that b R a.

(¢) R is antisymmetric if a R b and b R a imply that a = b;

(d) R s transitive ifa R b and b R ¢ imply thata R c.
Relations which are reflexive, symmetric and transitive are called equivalence rela-
tions; they are of fundamental importance. Relations which are reflexive, antisym-
metric and transitive are also important; they are called partial orders.
Examples. (a) Equality on a set is both an equivalence relation and a partial order.

(b) A relation R on Z is defined by: @ R b if and only if a — b is even. This is an
equivalence relation.

(c) If A is any set, the relation of containment C is a partial order on the power set
P(A).

(d) A relation R on N is defined by a R b if a divides h. Here R is a partial order
on N.

Equivalence relations and partitions. The structure of an equivalence relation on a
set will now be analyzed. The essential conclusion will be that an equivalence relation
causes the set to split up into non-overlapping non-empty subsets.

Let E be an equivalence relation on aset A. First of all we define the E-equivalence
class of an element a of A to be the subset

l[alg ={x | x € Aand xEa}.
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By the reflexive law a € [a]g, so

A={Jlale

acA

and A is the union of all the equivalence classes.

Next suppose that the equivalence classes |a] g and [b] g both contain an integer x.
Assume that y € [a]g; then y Ea, a Ex and x E b, by the symmetric law. Hence
y E b by two applications of the transitive law. Therefore y € [b]g and we have
proved that [a]g C [b]g. By the same reasoning [b]g C [a]g, so that [a]g = [b]E.
It follows that distinct equivalence classes are disjoint, i.e., they have no elements in
common.

What has been shown so far is that the set A is the union of the E-equivalence
classes and that distinct equivalence classes are disjoint. A decomposition of A into
disjoint non-empty subsets is called a partition of A. Thus E determines a partition
of A.

Conversely, suppose that a partition of A into non-empty disjoint subsets A,
A € A, isgiven. We would like to construct an equivalence relation on A corresponding
to the partition. Now each element of A belongs to a unique subset A;; thus we may
define a E b to mean that @ and b belong to the same subset A; . It follows immediately
from the definition that the relation E is an equivalence relation; what is more, the
equivalence classes are just the subsets Aj of the original partition.

We summarize these conclusions in:

(1.2.2) (i) If E is an equivalence relation on a set A, the E-equivalence classes form
a partition of A.

(ii) Conversely, each partition of A determines an equivalence relation on A for
which the equivalence classes are the subsets in the partition.

Thus the concepts of equivalence relation and partition are in essence the same.

Example (1.2.1) In the equivalence relation (b) above there are two equivalence
classes, the sets of even and odd integers; of course these form a partition of Z.

Partial orders. Suppose that R is a partial order on a set A, i.e., R is a reflexive,
antisymmetric, transitive relation on A. Instead of writing ¢ R b it is customary to
employ a more suggestive symbol and write

a <b.
The pair (A. <) then constitutes a partially ordered set (or poset).

The effect of a partial order is to impose a hierarchy on the set A. This can be
visualized by drawing a picture of the poset called a Hasse*diagram. It consists of

3Helmut Hasse (1898-1979).



1.2 Relations, equivalence relations and partial orders 7

vertices and edges drawn in the plane, the vertices representing the elements of A. A
sequence of upward sloping edges from a to b, as in the diagram below, indicates that
a < b, for example. Elements a, b not connected by such a sequence of edges do not
satisfy a < b or b < a. In order to simplify the diagram as far as possible, it is agreed
that unnecessary edges are to be omitted.

A very familiar poset is the power set of a set A with the partial order C, i.e.
(P(A), ©).

Example (1.2.2) Draw the Hasse diagram of the poset (P(A), C) where A = {1, 2, 3}.
This poset has 23 = 8 vertices, which can be visualized as the vertices of a cube
(drawn in the plane) standing on one vertex.

{1.2, 3}

Partially ordered sets are important in algebra since they can provide a useful
representation of substructures of algebraic structures such as subsets, subgroups,
subrings etc..

A partial order < on a set A is called a linear order if, givena, b € A, eithera < b
or b < a holds. Then (A, <) is called a linearly ordered set or chain. The Hasse
diagram of a chain is a single sequence of edges sloping upwards. Obvious examples
of chains are (Z, <) and (R, <) where < is the usual “less than or equal to”. Finally,
a linear order on A is called a well order if each non-empty subset X of A contains a
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least element a, i.e., such that a < x for all elements x € X. For example, it would
seem clear that < is a well order on the set of all positive integers, although this is
actually an axiom, the Well-Ordering Law, which is discussed in Section 2.1.

Lattices. Consider a poset (A, <). If a, b € A, then a least upper bound (or lub) of
aand b is anelement ¢ € A suchthata < ¢and b < ¢, and ifa < x and b < x, with
x in A, then ¢ < x. Similarly a greatest lower bound (or glb) of a and b is an element
g € Asuchthat g < aand g < b, while x < ¢ and x < b imply that x < g. Part of
the Hasse diagram of (A, <) is the lozenge shaped figure

¢

a b

8

A poset in which each pair of elements has an lub and a glb is called a lattice. For
example, (P(S). €) is a lattice since the lub and glb of A and B are AU B and AN B
respectively.

The composite of relations. Since a relation is a subset, two relations may be com-
bined by forming their union or intersection. However there is a more useful way of
combining relations called composition: let R and S be relations between A and B
and between B and C respectively. Then the composite relation

SoR

is the relation between A and C defined by a S o R c if there exists b € B such that
aRbandb S c.

For example, assume that A = Z, B = {a, b, ¢}, C = {«, B, y}. Define re-
lations R = {(1,a),(2.b),(4.¢)}, S = {(a,a).(b,y).(c.B)}. Then S o R =
{(1, ), (2, y). (4. B)}.

In particular one can form the composite of any two relations R and S on a set A.
Notice that the condition for a relation R to be transitive can now be expressed in the
foom Ro R C R.

A result of fundamental importance is the associative law for composition of rela-
tions.

(1.2.3) Let R, S, T berelations between A and B, B and C, and C and D respectively.
ThenT o (SoR)=(T oS)oR.



