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It is hard to believe that it is now 50 years since I conceived the concept of
periodical volumes of these “Advances” that would record progress in
Heterocyclic Chemistry. In 1960, heterocyclic chemistry was slowly emer-
ging from the dark ages; chemists still depicted purines by the archaic
structural designation introduced (was it by Emil Fischer?) 50 years
before that. Together with Jeanne Lagowski I had published in 1959 a
modern text on heterocyclic chemistry, the first that treated this subject in
terms of structure and mechanism and attempted to logically cover sig-
nificant methods of preparation and reactions of heterocyclic compounds
as a whole, all in terms of reactivity.

The first two volumes of Advances contained extensive chapters on
the tautomerism of various classes of heterocycles. Despite the great
influence the precise structure of heterocyclic compounds has on chemi-
cal and biological properties (we only have to remember base pairing of
nucleotides to illustrate this), at that time the literature was replete with
incorrectly depicted tautomers. The basis for the position of tautomeric
equilibria was usually completely misunderstood. Although great pro-
gress has been made in the last 50 years, there still exist holdouts even
among otherwise reputable chemists who persist in depicting 2-pyridone
as ‘2-hydroxypyridine”” which is a very minor component of the tauto-
meric equilibrium under almost all conditions.

Over the years Advances in Heterocyclic Chemistry has indeed mon-
itored many of the advances in the subject: the series is now boosted by
“Comprehensive Heterocyclic Chemistry” of which the first edition was
published in 1984 in 8 volumes, followed by the second edition in 1996 in
11 volumes and the third in 2008 in 15 volumes. Heterocyclic chemistry



X Milestone of 100 Volumes of Advances in Heterocyclic Chemistry

has now taken its place as one of the major branches (by several criteria
the most important) of Organic Chemistry.

Chemistry has rapidly become the universal language of molecular
interactions; it has essentially taken over biochemistry and is rapidly
gaining dominance in zoology, botany, physiology and indeed in many
branches of medicine.

Chemical structural formulae are quite basic to this progress and have
enabled us to rationalize many natural phenomenon and countless
reactions both simple and exotic discovered in the laboratory.

Now we have reached the milestone of 100 volumes of the series. In
place of a single volume we are offering the three volume set 99, 100 and
101 which contain a fascinating variety of reviews covering exciting
topics in heterocyclic chemistry.

Alan R. Katritzky
Gainesville, Florida



The final volume celebrating the attainment of the century for AHC
contains five chapters contributed by heterocyclic chemists from six
countries.

Soler, Moorefield, and Newkome (U. Akron, Akron, OH, USA) start
with a fascinating account of the Senior Author’s work on the construc-
tion of hexameric macromolecular architectures in organic chemistry.
Patil, Kavthe, and Yamamoto (I.I.C.T., Hyderabad, India, and Tohoku
U., Japan) summarize metal catalyzed cyclizations of alkynes bearing a
heteroatom attached to a substituent which migrates during the
annulation.

The chemistry of the 28 possible isomeric biindolyl structures is cov-
ered by Black and Kumar (UNSW, Sydney, Australia), while R.C.F. Jones
(Loughborough U., Loughborough, UK) has reviewed his own and
others” research on annulation reactions of 2-imidazoline. The volume
closes with an upto date account of the chemistry of the Dimroth Rear-
rangement contributed by E.S.H. El Ashry, S. Nadeem, M.R. Shah, and
Y.E. Kilany of Alexandria U. in Egypt.

Alan R. Katritzky
Gainesville, Florida
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1. INTRODUCTION

Peter Stang once noted (97]A4777) that “In nature the hexagon represents
the most common pattern throughout biological morphology from the
simple diatoms to the bee honeycomb” after reading a treatise by Geof-
frey Ozin (97ACR17) describing his investigations into the morphosynth-
esis of hierarchical inorganic structures, such as that of the radiolaria. The
ubiquitous occurrence of the hexagonal motif in nature coupled with
Peter Pearce’s postulate (78MI1) that “structure in nature is a strategy
for design” provides insight and reason to the plethora of diverse hex-
agonal architectures formed throughout synthetic chemistry. As well, the
burgeoning arena of Supramolecular Chemistry, pioneered by Jean-Marie
Lehn (78PAC871, 88AGES9, 95MI1), expands the platform for access to
self-assembled macrocycles based on the attractive interactions between
select metal ions and structurally compatible heterocyclic ligands. Trans-
cending consideration of covalent versus non-covalent bonding, supra-
molecular chemistry considers building blocks instilled with angles,
coordination sites, and affinities that drive their assembly to architectures
with utilities and designs not accessed from the starting materials alone.
Conjointment of the supramolecular regime with directed and conver-
gent synthetic protocols has facilitated new routes to macrocyclic
structures.

In a seminal review of the field of self-assembly of architectures
mediated by transition metals Stang et al. (0OCRV853) discussed and
delineated design strategies or models developed over the years by
such notable scientists as Saalfrank (97AGE2482), Lehn (99CEJ102,
99CEJ113), Raymond (99ACR975) [“Symmetry Interaction” Model], Ver-
kade (83JA2494), Fujita (98CSR417), and Stang (97ACR502, 98JCD1707)
[“Molecular Library Model”].

The Symmetry Interaction model considers the geometric relationships
between ligand coordination sites and metal centers by defining chelate
or coordinate vectors, based on the directional orientation of the ligand-
binding sites. For example, a bidentate bipyridine ligand coordinated to a
metal possesses a vector pointing toward the metal that bisects the chelating
group. The Molecular Library model considers the directionality and
geometry of multibranched, monodentate ligands and their ramifications
on the geometry of the desired molecular architecture. For example, rod-
like building blocks with incorporated angles of 90° and end-group
coordination sites would generate a tetragonal shape in the presence of
a connecting metal that is capable of sustaining 90° coordination.

Herein, we present a brief overview of the current literature dedicated
to hexameric macrocyclic architectures predicated on heterocyclic chem-
istry. We summarize the salient synthetic features of ring construction
whereby the participating heterocyclic building blocks, or subunits,
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possessing at least one heteroatom, such as nitrogen, oxygen, or sulfur,
with the recognition that such a broad subject will necessitate a limitation
in scope.

Excluding the “Introduction,” this review is organized based on the
building blocks used for macrocycle construction into three sections: five-
membered heterocyclic subunits, such as furan, furanose, or pyrole;
six-membered heterocyclic subunits, such as pyridine, bipyridine, phenan-
throline, or glucopyranose; and miscellaneous subunits comprising, for
example, a combination of five- and six-membered heterocyclic subunits
or larger than six-membered ring subunits. We have sought to include as
many pertinent new and classical examples as possible and will endeavor
to include examples that have been missed in future manuscripts.

2. MACROCYCLES WITH FIVE-MEMBERED HETEROCYCLIC
SUBUNITS

2.1 Furan, tetrahydrofuran, and thiophene

Hexameric macrocycles possessing subunits with oxygen have been
reported, of which some of the earliest examples incorporated a series
of 18-crown-6 ethers containing one-, two-, or three-furanyl subunits
(74JA7159). In 1955, Wright et al. reported (55]OC1147) the first example
of calix[6]furan 1, comprising six furan rings joined by sp’-hybridized
carbons. Such calix[6]furans possess a m-electron-rich cavity with a
hydrophilic character similar to crown ethers, but with decreased elec-
tron-donating character compared with ethereal analogues (05AHC65).
The calix[6]furan 1, which contains methyl groups in the meso-positions,
was synthesized following a two-step procedure involving the formation
of a three-furan linear oligomer by an acid-catalyzed condensation of
furan and acetone. Once the linear trimer was isolated, cyclization was
achieved by reaction with acetone in the presence of hydrochloric acid
affording (9%) the heterocycle 1 along with linear oligomers (Scheme 1).
Kobuke et al. (76]JA7414) modified the procedure for 1 by bubbling
hydrogen chloride gas into a solution of acetone and linear hexamer to
afford 1 in 52% yield. Other modified procedures include the addition of
concentrated HC], acetone, and linear hexamer in ethanol containing Li"
or Cs" ions or no metal, which afforded 1 in ~50% yields (85]CS(P1)973),
or slow addition of linear trimer and acetone to a diluted EtOH/HCI
mixture with 25% yield (96TL4593). Musau et al. reported (93CC1029,
94]JCS(P1)2881) the synthesis of the calix[6]furan with unsubstituted
methylene bridges, by cyclization of the corresponding linear hexamer
using dimethoxymethane, in the presence of BF;-Et,O, as the catalyst;
however, the desired hexamer was isolated in ~1% yield. Kobuke et al.
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HCl(aq)
F\ | /N | /) _CHsCOCHs
o o o EtOH
HCl(aq)
EtOH
03+ Yo

(76]JA7414) also reported the tetrahydrofuran analogue (Scheme 1) by the
hydrogenation of the furan units of 1 using ruthenium/carbon under
high pressure conditions to generate an isomeric mixture of the hexamer
2, which was shown to extract cesium, ammonium, and silver ions from
an aqueous to an organic phase. Finally, a larger hexameric macrocycle
containing six furan rings joined via acetylene bridges was also reported
(69A]C1951).

Three examples of hexameric macrocycles containing thiophene rings
have been reported. Meijere et al. described (95AGE781) the novel macro-
cycle 4, composed of six thiophene rings linked wvia spirocyclopropane
bridges. Reaction of polyalkyne 3 with Na,S under basic conditions
afforded within an hour 4 which was isolated by recrystallization in
chloroform in 59% yield (Scheme 2). The crystal structure (Figure 1)
showed a chair-like conformation, in which three sulfur atoms are
above and three below the plane of the macrocycle.

NayS+9H,0 (2 equiv.)

KOH, DMSO
55°C, 3h

Scheme 2
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Figure 1 X-ray crystal structure of 4 (95AGE781) (Reproduced by permission from Wiley-
VCH).

Ishii et al. (97CL897, 98BCJ2695) synthesized a sulfur-bridged thio-
phene macrocycle 5. Several different conditions were examined for the
preparation of 5 from different oligomers; the best results were obtained
(~10%) by heating dibromo oligo(thio-2,5-thienylene) containing six
thiophene rings with Na,S in NMP in the presence of Cs,CO; (Scheme 3).
Conditions such as Cul-catalyzed or non-catalyzed reactions also gave
the desired product, albeit in slightly lower yields. Sulfur-bridged calix-
arene-like molecules could function as hosts to soft and heavy metal ion
guests.

Another example of a cyclohexathiophene was reported by Kauff-
mann et al. (75AGE713), composed of six thiophene subunits bound
together through the 2,2’- and 3,3'-positions. It was isolated as a by-
product in 4% yield, not completely purified, from the reaction designed to
obtain cyclotetrathiophene.

Jones et al. (95AGE661) reported the synthesis of silicon-bridged
heterocycles containing furan or thiophene subunits. Furan and thio-
phene were deprotonated at the 2- and 5-positions in hexane, to generate

Br (/ \5 S /R s / \ Br NBQS C52C03 NMP C{ Q

C ﬁ>

Scheme 3
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the organolithium intermediates, followed by slow addition of Me,SiCl,
to afford the cyclic hexamer 6 or 7 (Scheme 4), respectively, along with
their corresponding cyclic tetramers. Macrocycles comprising other ring
sizes were detected in trace amounts by mass spectrometry.

2.2 Pyrrole

Examples of hexameric macrocycles containing pyrrole rings reported in
the literature (01CCR57, 08ACR265) include hexaphyrins or expanded
porphyrins, calix[6]pyrroles, and cyclo[6]pyrroles.

Hexaphyrins are conjugated macrocycles composed of six pyrrole
rings linked via sp® hybridized carbon atoms. The first example, meso-
hexaphenylhexaphyrin (9), was prepared by Bruckner et al. (97CC1689)
employing 5,10-diphenyltripyrrane (8) (Scheme 5), which was isolated as
a by-product from a reaction designed to generate 5-phenyldipyrro-
methane, by the condensation of pyrrole and benzaldehyde in the pre-
sence of an acid (94T11427, 94TL2455, 94TL6823). A 3+ 3-type
condensation of trimer 8 with benzaldehyde, gave after oxidation
and chromatography, the cyclic hexamer 5. A similar example,

= Ph
( > N Z
N (1:10) neat \ Y/
H : NH HN Ph Ph
i TFA, N, A
or (1:8) PhMe
Oy H Ph f\ Ph
TsOH (cat), N CHO (3:
" 3t Bhetoed o e
A NH H N Y/ Chloranil
8
Ph Ph
9

Scheme 5
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RR
R H
BF3.OEt N CF3CO5H
2N J(i 3-OEh Sy s g
{j R™°R EtOH l\1_| EtOH/acetone

7 days 7 days

a, R=Ph RR

b, R=2-pyridyl 10
Scheme 6

meso-hexa(pentafluorophenyl)hexaphyrins, was reported by Cavaleiro et al.
(99CC385) using a modification of the Rothemund synthesis (39JA2912).

Calix[6]pyrroles are nonconjugated macrocycles composed of six pyr-
role rings linked via sp® hybridized carbon atoms. A simple and efficient
route to calix[6]pyrrole (98 AGE2475) involved an acid-catalyzed conden-
sation of dipyrrolemethane with simple ketones that afforded polypyr-
role 10 (Scheme 6). X-ray structure determination of 10 revealed that
pyrrole units adopted a 1,3,5-alternate conformation in contrast to the
more prevalent cone conformation found in calix[6]arenes.

Another example in this family was reported by Sessler et al.
(05]JOC5982), whereby the dodecafluorocalix[6]pyrrole 11 was con-
structed (20%) by the condensation of 3,4-difluoro-1H-pyrrole with acet-
one in the presence of methanesulfonic acid and tetrabutylammonium
chloride (Scheme 7).

Calix[6]pyrroles have also been synthesized (00AGE1496) by the con-
version of a calix[6]furan to form the dodecaketone 12 via a ring-opening
process, as described by Williams and Le Goff (81JOC4143). Subsequent
reduction of the olefinic bonds and reaction with ammonium acetate gave
13 in 42% yield (Scheme 8).

F F
?/ \S N (0] CH3SO3H, TBACI
H /LK

MeOH, -4 °C, 6 days

Scheme 7



