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Heating of Magneto-Rheological Fluid Dampers:
A Theoretical Study

Darrell G. Breese', Faramarz Gordaninejad®

Department of Mechanical Engineering
University of Nevada, Reno

ABSTRACT

This paper focuses on a theoretical model that predicts the temperature increase of Magneto-
rheological (MR) fluid dampers experiencing a sinusoidal input motion. A theoretical model is
developed to estimate the temperature rise based on the non-linear behavior of the MR fluid
damper. This model is solved numerically, and the numerical solution is compared with a known
linear solution and experimental results in order to validate the accuracy of the model. Also, a
non-dimensional form of the governing equations are developed to examine the key parameters.
The non-dimensional terms show the effect of external and internal parameters on the trends of
heat dissipation as well as heat generation within the MR fluid damper.

1. INTRODUCTION

Semi-active energy dissipating devices are increasingly being investigated for various
applications [1,2]. Controllable fluid dampers are of particular interest in this area. These fluids
include MR and Electro-Rheological (ER) fluids, which change properties when exposed to
magnetic and electric fields, respectively. Devices, specifically axial dampers, utilizing MR
fluids are explored in this study. The primary purpose of a damper in any dynamic application is
the dissipation of energy. This energy would otherwise remain within the system that may lead to
premature failure of equipment. The damper dissipates the excess energy and primarily converts
it to heat. This study focuses on the theoretical modeling of generation and dissipation of heat for
MR fluid dampers.

Current research trends in this specific area are sparse. Some investigators have researched the
effects, on a microscopic scale of heat transfer within the passages of a system containing MR
Fluid [3,4]. The idea is to use MR Fluid to control heat transfer through a channel. This could be
accomplished by filling an opening between two walls with MR Fluid. The heat flux across the
MR Fluid could be partially controlled by varying the thermodynamic properties of the MR Fluid.
The thermodynamic properties of MR Fluid can be changed through the application of a magnetic
field to the fluid. Other research performed on MR fluid dampers included testing in an elevated
ambient temperature scenario in order to ensure performance requirement [5]. Other attempts
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have been made to quantify the temperature increase due to energy absorption of viscous as well
as ER fluid dampers [6].

In this study, a theoretical model is proposed to estimate the temperature of MR fluid dampers.
The model accounts for the increased internal energies due to a sinusoidal type input as well as
the heat generated through the use of an internal electromagnet. The model will account for the
inherent non-linearity of MR fluid dampers. The theoretical model is compared to a known exact
solution, and experimental data. In addition, dimensionless quantities are developed allowing
insight into the effects of different contributing parameters.

2. THEORETICAL MODELING

The theoretical model to determine the temperature increase in MR fluid dampers utilizes a
lumped system analysis. The lumped system approach assumes the difference in the temperatures
of any point within the damper with other points (i.e, temperature gradient) is within 5%. A
control volume is established to which an energy balance is applied, and the validity of the
lumped system analysis is presented. Terms accounting for work entering and leaving the
system, heat crossing the boundary and the internal energy of the system are represented. Non-
linearity inherent in MR fluid dampers is represented through a constitutive law for energy
dissipating devices. The energy balance is presented in rate form. Solving the energy balance
provides temperature of the system at any given instant. The theoretical model is then
manipulated to provide non-dimensional terms accounting for heat leaving the system as well as
heat generated by the electromagnet.

2.1. Lumped System Analysis

In order to determine the validity of a lumped system analysis, the Biot numbers of the materials
of construction were compared. A Biot value of 0.1 or less is recommended for an accurate
lumped system analysis [7]. All Biot numbers in the present analysis were found to be a
minimum of two orders of magnitude less than the recommended value.

First, the boundary for the control volume is established. This allows heat to leave the system
through conduction only, while work is entering the control volume through mechanical and
electrical forms. For stationary systems an energy balance yields

5 = 4U |
Q Qi (1
where Q is the rate of heat transfer, # is the power and dU/dt is the rate of change of total

energy of the system. The term Q is the rate of heat entering or leaving the lumped system. In

this specific case no heat enters the system, while heat is leaving the system through convection
with the surroundings. Therefore,

0=hA [6(1)- 0] @

where 4 is the convection heat transfer coefficient, 4, is the outer surface area of the damper, @,
1s the ambient temperature and ©(t) is the surface temperature of the damper at any given time, t.



The second term in the LHS of Eq. (1), #, represents the work entering or leaving the system
which can be expressed as,

X (t)

w=-F)22)_12(nR 3)

where

X(t) = X sin(ot). 4

Here, X{(1) is a sinusoidal input displacement, / is the input electric current, R is the wire resistance
of the electromagnet. In Eq. (3), F(?) represents the work input to the system through
reciprocation of the shaft. This analysis assumes that the input shaft work is sinusoidal. Also,
F(1)R, is the electric power applied to the damper, shown as a function of time. For this analysis,
however, the electrical work applied to the damper will be assumed constant with respect to time
in order to simplify the analysis.

The nonlinear constitutive law for the MR fluid dampers is assumed to be

_Aax@|® dX(z))
F(t)_cll a | B\ a ®

where C is the damping coefficient and o is a fractional exponent that accounts for the
nonlinearity inherent in a MR fluid damper. It should be noted that both C and a. are functions of
input electric current, /, and temperature, ®. Generally the range of o is 0 < a < 1.5. A value of

one represents purely viscous behavior and a value of zero corresponds to purely rigid plastic
behavior.

On the right hand side of Eq. (1), dU/dt is the rate of change of the internal energy of the system.
Because this is a lumped system analysis, this quantity represents a sum of all internal energies of
the material contained within the damper. The Biot number analysis shows that the temperature
gradient within the damper is much less than 5% difference across any distance within the
damper, therefore, the rate of change of temperature is assumed to be identical for all the
materials within the control volume. The right hand side of Eq. (1) can be expressed as

dU(t) _do@ .. .
d  dt chp ©

where dO(t)/dT is the rate of change of the temperature of the system and Emép is the

summation of the internal energies of the materials contained within the system. Substitution of
Egs. (2-6) into Eq. (1) and rearranging the terms yields,

a

CXa)cos(a)t)chos(wt) sgn( ()) n

1)+ A(O(1) - ® Y

where



A=—2= ® -
mc
p
and
2
I“R
n=—-x—. )]
ZmCP

Equation (7) represents the differential energy balance for the entire lumped system. Due to the
nonlinear nature of Eq. (7), it only can be solved numerically. An exact solution is available if o
is either zero or one. For the case of a MR fluid damper a is a non-integer, therefore, this requires
that an approximate solution for Eq. (7) be developed. Forward difference, utilizing a 4™ order
Runge-Kutta method, is employed to solve Eq. (7) for any value of a.

2.2 Dimensionless Form

Further generalization of the solution can be obtained by developing non-dimensional quantities
from Eq. (7). Rearranging and substituting values in Eq. (7) yields,

: a+l
%+A§=cos__(m+¢ (10)
where
25 =220 S8, an
@ X"w
K= ;iaﬂwa’ (12)
C
&= Zmé, ’ (3
i=t, (14)
[7)
and
=1
¢ K (15)

Equation (14) is a dimensionless quantity that represents the heat capacity and heat removal
characteristics of the system. Equation (15) is a dimensionless quantity that represents the energy
input to the system due to the electromagnet.



3. RESULTS AND DISCUSSION

First, a comparison is made between an exact and the numerical results to ensure the validity of
the approximate solution. Figure 1 shows the comparison of the approximate and exact solutions
of Eq. (7) for a = 1. A step size of 25 was used to produce the results shown in Figure 1. The
results indicate that the numerical simulation is a good approximation to the solution of Eq. (7)
with minimal error. :

Next, in order to produce the theoretical results for a MR fluid damper, the damping coefficient,
C, as well as the fractional exponent o needed to be determined or approximated for a specific
damper. Therefore, these coefficients are found through using a least squares curve-fitting
technique applied towards actual experimental data. A typical fit of Eq. (5) to experimental data
is shown in Figure 2. The MR fluid damper used for this purpose was designed, built and tested
at the University of Nevada, Reno [8] for a front suspension of a modern mountain bicycle. The
damper is approximately 15 cm in length and has an outside diameter of 3.2 cm. This damper
was required to have a through shaft design due to geometric constraints. The through shaft
design eliminates the need for an accumulator and accommodates a stroke of approximately 5.0
cm. The damper is extremely light in weight, at approximately 170 grams. For the results shown
in Figure 2, the input to the damper was a sinusoid of 0.01m amplitude at a frequency of 2 Hz.
Additional parameters used in producing results were surface area (A, of 0.01342 m?, resistance
(R) approximately 6.0 ohms, and a convection coefficient of 25 W/m?-°C.

Once the coefficients were determined as explained above, the theoretical simulation was used to
predict the temperature response of an experimental MR fluid damper. The above method tended
to produce results that over predicted experimental data. The reason for this arises from the fact
that the performance of any damper changes with increases or decreases in temperature of the
fluid. This results in the coefficients C and o not being constant. Using experimental data,
temperature-dependent functions for C and a were developed. These functions were
subsequently integrated into the approximate solution of the temperature problem. The functions
developed were C=(-5.36)*(Temperature)+260 and o=(-0.0042)*(Temperature)+0.455. These
functions indicate that the coefficient C varies significantly with change in temperature while the
coefficient a is nearly constant. Figure 3 shows the effect in predicting the temperature increase
of a MR fluid damper when including these temperature dependent coefficients compared with
the previous coefficients that did not account for temperature changes in the coefficients. The
final theoretical temperature increase for a MR fluid damper is compared to the actual
experimental data in Figure 4 for 2Amp input electric current to the damper.

The theoretical model was extended to include the dimensionless quantities shown in Egs. (14)
and (15). Equation (14) is a measure of the amount of heat leaving the system. The value for 1

was varied from 0 to 0.1, while the value of ¢ was set equal to zero. This is equivalent to
removing the work provided by the electromagnet from the system and only analyzing the
dissipation due to the input from the mechanical work. The lower limit of 2 =0 corresponds to
having nearly no convection present on the surface of the damper. At the other extreme when
A = 0.1corresponds to the damper in question having a very high heat transfer coefficient and/or
a very large surface area. Figure 5 shows plots of 4 plotted against dimensionless time (wt) and
A®, which are presented in Eq. (11). The results show that the dimensionless temperature
increase is greatly insensitive and non-linear with respect to the 4 term. Only in the case of
2 = 0.1 there is a dramatic decrease in the temperature of the damper. It should be noted that
A-=0.00012 for the solution that corresponds to the experimentally tested damper.



Finally, the effect of the heat Equation (15) corresponds to the work added to the system through
the electromagnet. Figure 6 shows plots of different values of ¢ plotted against dimensionless
time (ot) and A® . For the plots shown A was kept at a constant value of 0.00012. The value of
¢ was varied from 0 to 6000. When ¢ = 0 this corresponds to the off state of the electromagnet.

At a value of ¢ = 6000, the electromagnet is at nearly full power. As expected, increasing /)
increases the temperature of the system in a linear fashion.

4. SUMMARY AND CONCLUSIONS

A theoretical model was developed which provided the temperature increase of an MRF
damper subjected to a sinusoidal input motion. The theoretical model allowed different power
inputs to the electromagnet to be explored. Additionally, the theoretical model was numerically
solved for any value of the fractional exponent. The model was then further enhanced by
accounting for the change of performance of a MR fluid damper with large changes in
temperatures. Comparisons were made between the theoretical model and experimentally
determined data. This comparison validates the accuracy of the model as a useful prediction tool.
Non-dimensional terms were extracted from the theoretical model that allowed the isolation of
different input and output parameters to be accounted for. The non-dimensional parameters
showed that the temperature increase was fairly insensitive to changes in the heat transfer
coefficient and the surface area of the damper. On the other hand, the temperature increase was
sensitive to the work increases caused by the electromagnet, showing a nearly linear increase.
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