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Preface

Using the successful standard model of particle physics but without clear
guidance beyond it, it is a difficult task to write a physics book beyond the
standard model from a phenomenological point of view. At present, there is
no major convincing inner space related experimental evidence against the
standard model. The neutrino oscillation phenomena can be considered part
of it by including a singlet field in the spectrum. Only the outer space ob-
servations on matter asymmetry, dark matter, and dark energy hint at the
phenomenological need for an extension; however, there has been theoretical
need for almost three decades, chiefly because of the gauge hierarchy problem
in the standard model.

Thus. it seems that going beyond the standard model hinges on the desir-
ability of resolving the hierarchy problem. At the field theory level, it is fair to
say that the hierarchy problem is not as desperate as the nonrenormalizabil-
ity problem present in the old V- A theory of weak interactions on the road
to the standard model. An extension beyond the standard model can easily
be ruled out as witnessed in the case of technicolor. However, a consistent
framework with supersymmetry for a resolution of the hierarchy problem has
been around for a long time. Even its culprit “superstring” has been around
for twenty years, and the most remarkable thing about this supersymmetric
extension is that it is still alive. So the time is ripe for phenomenologists to
become acquainted with superstring and its contribution toward the minimal
supersymmetric standard model in four space-time dimensions.

This book is a journey toward the minimal supersymmetric standard model
(MSSM) down the orbifold road. After some field theoretic orbifold attempts
in recent years, there has been renewed interest in the physics of string orb-
ifolds and it is time to revisit them. In this book, we take the viewpoint that
the chirality of matter fermions is essential toward revealing the secrets of
Nature. Certainly. orbifolds are an easy way to get the chirality from higher
dimensions.

Strings and their orbifold compactification are presented for the interests
of phenomenologists. sacrificing mathematical rigor. They are presented in
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such a way that an orbifold model can be constructed by applying the rules
included here. At the end of Chap. 10. we construct a Zs orbifold which
contains all imaginable complications. Also, we attempt to correct any in-
completeness in the rules presented before in the existing literature. In the
final chapter we tabulate the simplest and most widely used orbifold Z3 with
N =1 supersymmetry. completely in the phenomenological sense of obtaining
three families. These tables encompass all noteworthy models available with
two Wilson lines. Since three Wilson line Z3 orbifolds do not autmomatically
give three families. in a practical manner these tables close a chapter on Zj
orbifolds.

This book is not as introductory as a textbook. nor is it as special as a
review article on a superstring topic. Instead. we aimed at an interim region so
that a phenomenologist can read and directly commence building an orbifold
model.

We thank Kyuwan Hwang for his help in constructing the Zs orbifold ta-
bles. We are also grateful to Kiwoon Choi, Ki-Young Choi. Luis Ibanez, Gordy
Kane, Hyung Do Kim, Jewan Kim, Seok Kim, Tatsuo Kobayashi, Bumseok
Kyae, Oleg Lebedev, Andre Lukas, Stefan Groot Nibbelink, Hans-Peter Nilles,
Fernando Quevedo, Stuart Raby, Michael Ratz, and Hyun Seok Yang for pro-
viding valuable suggestions in the course of writing this book. We thank the
Korea Research Foundation and the Korean Science and Engineering Foun-
dation for the supports.

Seoul Kang-Sin Choi
November. 2005 Jihn E. Kim
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1

Introduction and Summary

During and since the second half of the twentieth century. enormous progress
has been made in understanding our universe in terms of fundamental parti-
cles and their interactions. namely in the language of quantum field theory.
The advent of the standard model (SM) of particle physics has been the culmi-
nation of quantwn field theory in all its full glory. The dawn of this successful
particle physics era was opened with the unexpected discovery of parity vio-
lation in weak interaction phenomena [1]. It had long been known that weak
interactions change the electromagnetic charge, i.e. electron (¢) to electron
type neutrino (v, ). neutron (n) to proton (p). But, until the mid-1950s it had
never occurred to the leading minds [2] that “parity might be violated™, chiefly
because the atomic and nuclear transitions did not reveal any such possibil-
ity before that time. For nuclear transitions, both weak and electromagnetic
phenomena contribute but at that time there were not sufficient data to fully
conclude on the nature of parity operation in weak interactions [1]. For atomic
transitions, the fundamental interaction is of electromagnetic origin and the
experimental confirmation of parity conservation in atomic phenomena con-
vinced most physicists that parity is conserved in the universe. In hindsight.
parity conservation should have been imposed only on electromagnetic inter-
actions. as the discovery of parity violation in weak interactions started a new
era for weak interactions. There is still no experimental evidence that strong
and electromagnetic interactions violate parity. Therefore. we know that par-
ity violation in weak interactions is at the heart of making our universe as
it is now. because the SM assumes from the outset the existence of massless
chiral fields.!

Soon afterward. the paritv-violating weak interactions were neatly summa-
rized as a four fermion (charged current) x (charged current) weak interaction
where the charged current J$ is of the “V-A" type [3].

(1.1)

' Massless compared to the Planck mass M.
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The “V-A" charged current of weak interactions indicates two important
things: (1) only the left-handed fermions participate in the charge chang-
ing weak interactions, and (2) being current. the fundamental interaction at a
deeper level may need a vector boson. Here. we note that the chiral nature of
weak interactions is still the mystery among all mysteries of particle physics in
the search for a fundamental theory at a very high energy scale using the low
energy SM. Several years after this effective low energy (current) x (current)
four-fermion interaction was proposed. a modest attempt via a more funda-
mental interaction through a heavy spin-1 charged intermediate vector boson
(IVB) U"f was put forth [4]. Its coupling to the charged current was given by

2\/ JECWH 4+ he. (1.2)
The mass of W, was supposed to be heavy so that the four-fermion interaction
mediated by the IVB is weak compared to the strong interactions. However,
this IVB idea had several problems which have since been resolved by the
standard model of particle physics.

A spin-1 field coupling to the fermion current had already been known
in electromagnetic interactions, i.e. the photon A4, coupling to the clectro-
magnetic current through eﬂm”wAu This electromagnetic interaction can be
formulated in terms of U(1) gauge theory [5], wherc one uses the covafiant
derivative D,, instead of the ()Idmaly partial derivative 0,

Oy — D, =0, A,
which introduces the minimal gauge coupling of A, to charged fields. In quan-
tum mechanics, the additive conservation of electromagnetic charge implies a
global U(1) symmetry and generalizing it to a local U(1) leads to the above
covariant derivative. This is our first example of how a bigger symmetry might
be discovered from a representation of matter, i.e. starting from the electron
in the above example of quantum electrodynamics.

Consider the generalization of this gauge principle to the IVB. Since the
IVB changes the electromagnetic charge, we must start from a defining state
in Hilbert space which contains at least two components differing by one-
unit of the electromagnetic charge. This doublet is a kind of matter which. in
the doublet representation. necessarily introduces a nonabelian gauge group.
This is our second example in which matter can indicate a bigger symmetry. In
general, one can introduce the covariant derivative using the nonabelian gauge
fields Afl(i =1.2..... N4). with the size N4 (e.g. 3 for SU(2)) dependent
upon the matter representation. Yang and Mills were the first to show that
a consistent construction along this line needs nonlinear couplings between
gauge fields.

In the late 1960s the standard model of particle physics was constructed,
employing the nonabelian gauge group. The group structure is SU(2) x U(1)
[6]. and the covariant derivative is
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Dy =0;~ igT'A;, —ig'Y B, (1.3)
where 7" (i = 1.2.3) are the SU(2) generators and Y is the electroweak hyper-
charge generator. The Gell-Nann-Nishijima type definition of the electromag-
netic charge is Q. = T3+ Y. All leptons and quarks are put into left-handed
doublets and right-handed singlets. and the charged current IVB mediation vi-
olates parity svmmetry by construction from the outset. For example. the left-
handed electron and its neutrino are put into a doublet I = (1., €)!. where
L(R) represents the left(right)-handed projection L = l% or Yy = L;”p
Since the quarks carry the additional degree called color coming in three va-
rieties. the first family (/.. ¢p.qr. up.dr) contains 15 two-component chiral
fields. In addition. these fifteen fields repeat three times. making a total of 45
chiral fields. all of which have been observed in high energy accelerators.
The SN representation is written in such a way that the intermediate
vector boson 11" transforms the lower elements of [ and ¢ to their upper
elements. For example ey to v.p and dp to up, and hence there exists the

coupling

g - 05 1rr
gt el T
/9 D) H
V 2

For cach representation. we can assign the Y quantum number to match
the electromagnetic charges of the fields in the representation through the
following formula.?

(12('771 = rlﬁ; +Y. (14)

Thus, the standard model is certainly left(L)-right(R) asymmetric in that the
interchange L — IR does not give the original representation. This is called a
chiral theory.® In a chiral theory. one cannot write down a mass term for the
fermions. Under the SM group SU(2) x U(1). for example. one cannot write
down a gauge invariant mass term for ¢(/ = 2 1.eg =1 where the weak
hypercharges are written as subscripts in the usual way). The SM is designed
such that chiral fermions can obtain mass after the gauge group SU(2) x
U(1) is spontaneously broken down to U(1)em, and then one has to consider
only the gauge invariance of the unbroken gauge group U(1)q,,. This makes it
possible to write
—mocc = —m (CreL +€LCR) .

This wayv of rendering mass to SM chiral fields is assumed throughout this
book. and the fundamental question is how such chiral fields arise in the
beginning. For spontaneous svmmetry breaking leading to G — H.* one needs
a singlet member under the Lorentz group and a singlet under the unbroken

20, has ¥ = —L e has Y = —1. qr has Y = %‘ wp has Y = 12 and dj has
y=-1 ) ’

) 3 - e ) '

3 The converse is not necessarily true: the SU(2) . x SU(2)gx U(1) model is L — R
svmmetric but chiral [7].

* In the above e_\’amplefG = SU(2) x U(1)y and H = U(1),.
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gauge group H, but there should also be a non-singlet under G. In the Hilbert
space. such a member as a fundamental field is a neutral scalar transforming
nontrivially under both SU(2) and U(1). The simplest such representation is
a spin-0 Higgs doublet with ¥ = 1 [8],

6= (‘;;) . (1.5)

A more complicated mechanism for spontaneous symmetry breaking is the use
of a composite field which is a neutral scalar transforming nontrivially under
both SU(2) and U(1). The simplest such composite field is one that assumes
a new confining force, the so-called techni-color confining around the TeV
scale, and composites of techni-quarks realize this idea [9]. This neutral scalar
component can develop a vacuum expectation value(VEV) which certainly
breaks G but leaves H invariant. Breaking the gauge symmetry through the
VEV of scalar fields is the Higgs mechanism [10]. The SM is a chiral theory
based on SU(2)xU(1) with the above Higgs mechanism employed.

Below the spontaneous symmetry breaking scale. the unbroken gauge sym-
metry is H, and the gauge bosons of G corresponding to G/H obtain mass of
order (gauge coupling)x (VEV). This process applied to the SM renders three
IVB(W®, Z) masses at the electroweak scale: My ~ 80 GeV, My ~ 91 GeV.
Of course, the photon A, remains massless. The origin of the fermion masses
in the SM is not from the SU(2)xU(1) invariant mass term, which cannot be
written down anyway, but originates from the gauge invariant Yukawa cou-
plings of the fermions with the spin-0 Higgs doublet. Then. fermion masses
are given by (Yukawa couplings)x (VEV). A variety of fermion masses is at-
tributed to the variety of the Yukawa couplings.

One can glimpse that the essence of the above description of nature in
terms of the SM is that the theory is chiral until the SM gauge group is
spontaneously broken at the electroweak scale of v ~ 247 GeV. Since the
fundamental theory may be given at the Planck scale

19
Mp— 122X GV _ o 14 % 101 Gev (1.6)
Va8
our chief aim in the construction of the SM is to obtain the correct chiral
spectrum from a fundamental theory such as string theory given near the
Planck scale. As we move toward a chiral theory, the parity violating weak
interaction phenomena guide us to the SN

In the search for a fundamental theory, two approaches can be taken. One
can be the accumulation of low energy observed evidence and the building
of a theoretically satisfactory gigantic model describing all these phenomena.
This is a bottom-up approach in which the model cannot be excluded ex-
perimentally and is hence physically sound. The other approach is to find a
theoretically satisfactory model given near the Planck scale and compare its
low energy manifestation with experimental data. This is known as the top-
down approach. Sometimes, the bottom-up approach is mingled together with
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the top-down approach because a fundamental theory can never be achieved
using the bottom-up approach alone. In any case. one needs guidance for such
a theory. From the theoretical point of view. the best guidance is the symmetry
principle. In recent vears. the top-down approach has gained momentum.
Looking back at the construction of the SN it started from matter rep-
resentation W) in the Hilbert space where W) svmbolically stands for the L-
handed electron doublet [ and the R-handed electron singlet ep. If we include

quarks also in the matter. |¥) will include them as well. In this Hilbert space.
operations by the weak charge and the electromagnetic charge are treated in
a similar fashion. thus the SN is dubbed with the phrase. “unified theory of
weak and electromagnetic interactions™. The key point to observe here is the
role of matter representation |¥). It is the representation on which symmetry
charges act. In this book we will generalize this svmmetry concept. and adopt
the unification theme: unify all the matter representations if it is posstble.

The first top-down approach toward a more fundamental theory beyvond
the SM was the grand unified theory (GUT). In one attempt. among the
representations in |¥) the lepton doublet [ and the charge conjugated field
d; of the R-handed dr quark are unified into a single representation [11].
Other SM representations are grouped together. This attempt succeeded in
unifving the SN group into a simple group SU(5). Another early attempt
was to combine the quark doublet ¢ and the lepton doublet [ together into a
single representation [7]. Then. the remaining SM representations are matched
together with the attempted extended gauge group. This attempt succeeded
with a semi-simple group SU(4) x SU(2),, x SU(2)r. It follows that, in these
GUTs the strong and electroweak couplings are necessarily the same when
the unification is valid.

Apparently. the strong. weak and electromagnetic couplings observed at
low energy are not the same at the electroweak scale. and at first glance this
idea of unification with the identical gauge couplings seems to contradict the
observed phenomena. However. the size of the coupling constant looks dif-
ferent at different energy scales of the probing particle. This is due to the
fact that a renormalizable theory intrinsically introduces a mass scale p. and
the energy dependence of the coupling is described by the renormalization
group equation. Therefore. one can construct a GUT such that the gauge
couplings are unified at a scale. say at M. which is supposed to be super-
heavy so that the elecroweak coupling and the strong coupling constants are
sufficient]ly separated at the energy scales (~100 GeV) probed by the current
accelerators [12]. For a significant separation through logarithmic dependence.
one needs an exponentially large M [12] which should be smaller than the
Planck mass so that gravitational corrections might be insignificant. Here. we
should not forget that the construction of the simplest SU(5) was possible af-
ter realizing that one can collect all the picces of the fifteen chiral fields with



